Log in

Modeling Floodplain Inundation, Circulation, and Residence Time Under Changing Tide and Sea Levels

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Sea-level rise will have unknown effects on the structure and function of valuable tidal freshwater floodplains. One reason for this knowledge gap is our poor constraint on the physical controls on complex floodplain inundation and circulation processes. Here, a high-resolution light detection and ranging (lidar) digital elevation model (DEM) is applied to fine-scale numerical simulations of flow and tracer exchange in a 0.43 km2 river floodplain in Southeast Florida, USA. The sequence of inundation and associated circulation patterns is assessed at 1-h intervals of the rising and falling tide in the context of floodplain geomorphic structure. The depth averaged velocity vectors show concomitant flow divergence and convergence over small spatial scales, and this complexity arises from the submergence and emergence of subtle floodplain topography over the tidal cycle. Tracer exchange and associated residence times highlight the controls of floodplain topography on water storage at the end of the ebb cycle, or during low river stages. The effects of a 0.2 m and 0.5 m increase in mean sea level on inundation extent and water retention times were also assessed. Percent change in inundated area and associated e-folding times reveal greater lateral inundation extent and a 20% increase in water retention times with up to a 0.5 m increase in mean sea level. This work reveals the topographic influence on how, when, and where sea level rise will impact the freshwater floodplain through increased hydro period and saltwater intrusion, and the importance of evaluating floodplain restoration benefits in the context of fine-scale surface flow processes and sea-level rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Asadi, K., and J.G. Duan. 2017. Assessing methods for estimating roughness coefficient in a vegetated marsh area using Delft3D. Journal of Hydroinformatics 19 (5): 766–783.

    Article  Google Scholar 

  • Amezcua, F., F. Flores de Santiago, J. Rajnohova, F. Flores, and F. Amezcua-Linares. 2019. The effect of hydrological connectivity on fish assemblages in a floodplain system from the South-East Gulf of California, Mexico. Frontiers in Marine Science 6: 240. https://doi.org/10.3398/fmars.2019.00240.

    Article  Google Scholar 

  • Amoros, C., and G. Bornette. 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 517–539.

    Article  Google Scholar 

  • Arcement, G.J., & V.R. Schneider. (1987). Roughness coefficients for densely vegetated flood plains. Department of the Interior, US Geological Survey, 4247. https://doi.org/10.3133/wri834247

  • Arias, M.E., F. Wittman, P. Parolin, M. Murray-Hudson, and T.A. Cochrane. 2018. Interactions between flooding and upland disturbance drives species diversity in large river floodplains. Hydrobiologia. 814 (1): 5–17. https://doi.org/10.1007/s10750-016-2664-3.

    Article  Google Scholar 

  • Bacopoulos, P., and S.C. Hagen. 2009. Tidal simulations for the Loxahatchee River estuary (Southeastern Florida): On the influence of the Atlantic Intracoastal Waterway versus the surrounding tidal flats. Journal of Waterway, Port, Coastal, and Ocean Engineering. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000005.

  • Baltsavias, E.P. 1999. Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing 54 (2): 199–214.

    Article  Google Scholar 

  • Bates, P.D., M.G. Anderson, D.A. Price, R.J. Hardy, and C.N. Smith. 1996. Analysis and development of hydraulic models for floodplain flows. In Floodplain processes, ed. M.G. Anderson, D.E. Walling, and P.D. Bates . Hoboken: Wiley.2015–2054

    Google Scholar 

  • Benke, A.C., I. Chaubey, G.M. Ward, and E.L. Dunn. 2000. Flood pulse dynamics of an unregulated river floodplain in the southeastern U.S. coastal plain. Ecology. 81 (10): 2730–2741.

    Article  Google Scholar 

  • Blankespoor, B., S. Dasgupta, and B. Laplante. 2014. Sea-level rise and coastal wetlands. Amibo. 43 (8): 996–1005.

    Google Scholar 

  • Brady, N.C., and R.R. Weil. 2008. Soil colloids: Seat of soil chemical and physical acidity. The Nature and Properties of Soils.: 311–358.

  • Breithaupt, J.L., J.M. Smoak, R.H. Byrne, M.N. Waters, R.P. Moyer, and C.J. Sanders. 2018. Avoiding timescale bias in assessments of coastal wetland vertical change. Limnology and Oceanography 63 (Suppl 1): S477–S495.

    Article  Google Scholar 

  • Chow, V.T. (1959) Open Channel Hydraulics. New York: McGraw-Hill

  • Coe, M.T., M.H. Costa, and E.A. Howard. 2008. Simulating the surface waters of the Amazon River basin: Impact of new river geomorphic and flow parameterizations. Hydrological Processes 22: 2542–2553. https://doi.org/10.1002/hyp.6850.

    Article  Google Scholar 

  • Connell, R.J., C. Beffa, and D.J. Painter. 1998. Comparison of observations by flood plain residents with results from a two-dimensional flood plain model: Waihao River, New Zealand. Journal of Hydrology (NZ). 37: 55–79.

    Google Scholar 

  • Courtwright, J.L., and S.E.G. Findlay. 2011. Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson River. Wetlands. 31: 239–249.

    Article  Google Scholar 

  • Cowell, P.J., M.J. Stive, A.W. Niedoroda, H.J. de Vriend, D.J. Swift, G.M. Kaminsky, and M. Capobianco. 2003. The coastal-tract (part 1): A conceptual approach to aggregated modeling of low-order coastal change. Journal of Coastal Research: 812–827.

  • Crosato, A., and M.S. Saleh. 2010. Numerical study on the effects of floodplain vegetation on river planform style. Earth Surface Processes and Landforms 36 (6): 711–720.

    Article  Google Scholar 

  • Csanady, G.T. 1973. Turbulent diffusion in the environment (no. 3). Dordrecht: Reidel.

    Book  Google Scholar 

  • Doyle, T.W., C.P. O’Neil, M.P.V. Melder, A.S. From, and M.M. Palta. 2007. Tidal freshwater swamps of the southeastern United States: Effects of land use, hurricanes, sea-level rise, and climate change. In Ecology of Tidal Freshwater Wetlands of the Southeastern United States, ed. W.H. Conner, T.W. Doyle, and K.W. Krauss. Dordrecht: Springer.

    Google Scholar 

  • Drouin, A., D. Saint-Laurent, L. Lavoie, and C. Ouellet. 2011. High-precision elevation model to evaluate the spatial distribution of soil organic carbon in active floodplains. Wetlands. 31 (6): 1151–1164.

    Article  Google Scholar 

  • Falter, D., N.V. Dung, S. Vorogushyn, K. Schroter, Y. Hundecha, H. Kreibich, H. Apel, F. Theisselmann, and B. Merz. 2016. Continuous, large-scale simulation model for flood risk assessments: Proof-of-concept. Journal of Flood Risk Management 9: 3–21. https://doi.org/10.1111/jfr3.12105.

    Article  Google Scholar 

  • Gori, A., R. Blessing, A. Juan, S. Brody, and P. Bedient. 2019. Characterizing urbanization impacts on floodplain through integrated land use, hydrologic, and hydraulic modeling. Journal of Hydrology 568: 82–95. https://doi.org/10.1016/j.jhydrol.2018.10.053.

    Article  Google Scholar 

  • Hamilton, S.K. 2009. Floodplains. In Encyclopedia of inland waters, ed. G.E. Likens, 378–386. Oxford: Elsevier.

    Chapter  Google Scholar 

  • Hamilton, S.K., J. Kellndorfer, B. Lehner, and M. Tobler. 2007. Remote sensing of floodplain geomorphology as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology. 89: 23–38.

    Article  Google Scholar 

  • Hardy, R.J., P. Bates, and M. Anderson. 2000. Modeling suspended sediment deposition on a fluvial floodplain using a two-dimensional dynamic finite element model. Journal of Hydrology 229 (3–4): 202–218.

    Article  Google Scholar 

  • Hervouet, J.M., and L. Van Haren. 1996. Recent advances in numerical methods for fluid flows. In Floodplain Processes, ed. M.G. Anderson, D.E. Walling, and P.D. Bates, 183–214. Hoboken: Wiley.

    Google Scholar 

  • Hu, G.G., and Y. Wan. 2008. Modeling the hydrology and hydrodynamics in Loxahatchee River and Estuary, Florida during Hurricanes Frances and Jeanne. Estuarine and Coastal Modeling 2007: 138–149.

    Article  Google Scholar 

  • Hudson, P.F., M.A. Sounny-Slitine, and M. LaFevor. 2013. A new longitudinal approach to assess hydrologic connectivity: Embanked floodplain inundation along the lower Mississippi River. Hydrological Processes 27 (15): 2187–2196. https://doi.org/10.1002/hyp.9838.

    Article  Google Scholar 

  • Hydraulics, Delft. 2007. User manual delft3d-flow: WI. Delft Hydraulics.

  • Ji, X., L.F.W. Lesack, J.M. Melack, S. Wang, W.J. Riley, and C. Shen. 2019. Seasonal and interannual patterns and controls of hydrological flues in an Amazon floodplain lake with a surface-subsurface process model. Water Resources Research 55 (4): 3056–3075. https://doi.org/10.1029/2018WR023897.

    Article  Google Scholar 

  • Jones, K.L., G.C. Poole, S.J. O’Daniel, L.A. Mertes, and J.A. Stanford. 2008. Surface hydrology of low-relief landscapes: Assessing surface water flow impedance using lidar-derived digital elevation models. Remote Sensing of Environment 112 (11): 4148–4158.

    Article  Google Scholar 

  • Junk, W.J., M.T.F. Piedade, J. Schongart, M. Cohn-Haft, J.M. Adeney, and F. Wittmann. 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands. 31: 632–640. https://doi.org/10.1007/s13157-011-0190-7.

    Article  Google Scholar 

  • Kaplan, D., R. Munoz-Carpena, Y. Wan, M. Hedgepeth, F. Zheng, R. Roberts, and R. Rossmanith. 2010. Linking river, floodplain, and vadose zone hydrology to improve restoration of a coastal river affected by saltwater intrusion. Journal of Environmental Quality 39 (5): 1570–1584.

    Article  CAS  Google Scholar 

  • King, S.L., R.R. Sharitz, J.W. Groinger, and L.L. Battaglia. 2009. The ecology, restoration, and management of southeastern floodplain ecosystems: A synthesis. Wetlands. 29 (2): 624–634.

    Article  Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature. 504 (7478): 53–60.

    Article  CAS  Google Scholar 

  • Klimas, C., E. Murray, T. Foti, J. Pagan, and H. Langston. 2009. Geomorphology, plant community distribution, and wetland restoration in the Mississippi Alluvial Valley. Wetlands. 29: 430–450.

    Article  Google Scholar 

  • Lesser, G. 2000. Computation of three-dimensional suspended sediment transport within the DELFT3D-FLOW module. Oak Brook: IHE.

    Google Scholar 

  • Liu, G.D., Y.C. Li, R. Munoz-Carpena, M. Hedgepeth, Y. Wan, and R. Robert. 2011. Growth of bald cypress (Taxodium distichum) seedlings in the tidal floodplain of the Loxahatchee River. Florida Scientist 74 (2): 82–99.

    Google Scholar 

  • Meeder, J.F., R.W. Parkinson, P.L. Ruiz, and M.S. Ross. 2017. Saltwater encroachment and prediction of future ecosystem response to the Anthropocene Marine Transgression, Southeast Saline Everglades, Florida. Hydrobiologia 803: 29–48.

    Article  Google Scholar 

  • Miller, R.L., and B.F. McPherson. 1991. Estimating estuarine flushing and residence times in Charlotte Harbor, Florida via salt balance and a box model. Limnology and Oceanography 36 (3): 602–612. https://doi.org/10.4319/lo.1991.36.3.0602.

    Article  Google Scholar 

  • Miyake, Y., S. Kimura, T. Kawamura, T. Kitagawa, M. Hara, and H. Hoshikawa. 2010. Estimating larval supply of Ezo abalone Haliotis discus hannai in a small bay using a coupled particle-tracking and hydrodynamic model: Insights into the establishment of harvest refugia. Fisheries Science 76 (4): 561–570. https://doi.org/10.1007/s12562-010-0260-4.

    Article  CAS  Google Scholar 

  • Monsen, N.E., J.E. Cloern, and L.V. Lucas. 2002. A comment on the use of flushing time, residence time, and age as transport time scales. Limnology and Oceanography 47 (5): 1545–1553.

    Article  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology. 83 (10): 2869–2877.

    Article  Google Scholar 

  • Nash, J.E., and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology 10 (3): 282–290.

    Article  Google Scholar 

  • Nicholas, A.P., and C.A. Mitchell. 2003. Numerical simulation of overbank processes in topographically complex floodplain environments. Hydrological Processes 17 (4): 727–746.

    Article  Google Scholar 

  • Nicholls, R.J., and A. Cazenave. 2010. Sea-level rise and its impact on coastal zones. Science. 328 (5985): 1517–1520.

    Article  CAS  Google Scholar 

  • Obeysekera, J., M. Irizarr, J. Park, J. Barnes, and T. Dessalegne. 2011. Climate change and its implication for water resources management in South Florida. Journal of Stochastic Environmental Research and Risk Assessment. 25 (4): 495–516.

    Article  Google Scholar 

  • Opperman, J.J., R. Luster, B.A. McKenney, M. Roberts, and A.W. Meadows. 2010. Ecologically functional floodplains: Connectivity, flow regime, and scale. Journal of the American Water Resources Association 46 (2): 211–226.

    Article  Google Scholar 

  • Overton, I.C. 2005. Modelling floodplain inundation on a regulated river: Integrating GIS, remote sensing and hydrological models. River Research and Applications 21: 991–1001.

    Article  Google Scholar 

  • Passeri, D.L., S.C. Hagen, N.G. Plant, M.V. Bilskie, S.C. Mederios, and K. Alizad. 2016. Tidal hydrodynamics under future sea level rise and coastal morphology in the northern Gulf of Mexico. Earth’s Future 4 (5): 159–176.

    Article  Google Scholar 

  • Pringle, C.M. 2003. What is hydrologic connectivity and why is it ecologically important? Hydrological Processes 17: 2685–2689.

    Article  Google Scholar 

  • Reis, V., V. Hermoso, S.K. Hamilton, S.E. Bunn, and S. Linke. 2019. Conservation planning for river-wetland mosaics: A flexible spatial approach to integrate floodplain and upstream catchment connectivity. Biological Conservation 236: 356–365. https://doi.org/10.1016/j.biocon.2019.05.042.

    Article  Google Scholar 

  • Roelvink, J.A. 2006. Coastal morphodynamic evolution techniques. Coastal Engineering 53 (2–3): 277–287.

    Article  Google Scholar 

  • Rudorff, C.M., J.M. Melack, and P.D. Bates. 2014a. Flooding dynamics on the lower Amazon floodplain: 1. Hydraulic controls on water elevation, inundation extent, and river-floodplain discharge. Water Resources Research 50: 619–634. https://doi.org/10.1002/2013WR014091.

    Article  Google Scholar 

  • Rudorff, C.M., J.M. Melack, and P.D. Bates. 2014b. Flooding dynamics on the lower Amazon floodplain: 2. Seasonal and interannual variability. Water Resources Research 50: 635–649. https://doi.org/10.1002/2013WR0114714.

    Article  Google Scholar 

  • Schramm, H.L., Jr., M.S. Cox, T.E. Tietjen, and A.W. Ezell. 2009. Nutrient dynamics in the lower Mississippi floodplain: Comparing present and historic hydrologic conditions. Wetlands. 29: 476–487.

    Article  Google Scholar 

  • SFWMD. 2002. Technical criteria to support development of minimum flow and levels for the Loxahatchee River and estuary. West Palm Beach, FL.

  • SFWMD. 2006. Restoration plan for the northwest fork of the Loxahatchee River. West Palm Beach, FL.

  • Sharitz, R.R., and W.J. Mitsch. 1993. Southern floodplain forests. Biodiversity of the southeastern United States: Lowland terrestrial communities. New York: Wiley.

    Google Scholar 

  • Shen, C., J. Niu, and M.S. Phanikumar. 2013. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model. Water Resources Research 49: 2552–2572. https://doi.org/10.1002/wrcr.20189.

    Article  Google Scholar 

  • Sullivan, J.C., R. Torres, A. Garrett, J. Blanton, C. Alexander, M. Robinson, T. Moore, J. Amft, and D. Hayes. 2015. Complexity in salt marsh circulation for a semienclosed basin. Journal of Geophysical Research - Earth Surface: 120. https://doi.org/10.1002/2014JF003365.

  • Sullivan, J.C., R. Torres, and A. Garrett. 2019. Intertidal creeks and overmarsh circulation in a small salt marsh basin. Journal of Geophysical Research - Earth Surface 124. https://doi.org/10.1029/2018JF004861.

  • Sweet, W.V., R.E. Kopp, C.P. Weaver, J. Obeysekera, R.M. Horton, E.R. Thieler, and C. Zervas. 2017. Global and Regional Sea Level Rise Scenarios for the United States. 75 pp., National Oceanic and Atmospheric Administration, National Ocean Service.

  • Temmerman, S., T.J. Bouma, G. Grovers, and D. Lauwaet. 2005. Flow paths of water and sediment in a tidal marsh: Relations with marsh development stage and tidal inundation height. Estuaries. 28 (3): 338–352.

    Article  Google Scholar 

  • Teng, J., J. Vaze, D. Dutta, and S. Marvanek. 2015. Rapid inundation modelling in large floodplains using lidar DEM. Water Resources Management 29 (8): 2619–2636.

    Article  Google Scholar 

  • Thoms, M.C. 2003. Floodplain–river ecosystems: Lateral connections and the implications of human interference. Geomorphology. 56: 335–349.

    Article  Google Scholar 

  • Tockner, K., M. Florian, and J.V. Ward. 2000. An extension of the flood pulse concept. Hydrological Processes 14 (16–17): 2861–2883.

    Article  Google Scholar 

  • Valle-Levenson, A., A. Dutton, and J.B. Martin. 2017. Spatial and temporal variability of sea level rise hot spots over the eastern United States. Geophysical Research Letters 44 (15).

  • Van der Wegen, M., and J.A. Roelvink. 2008. Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. Journal of Geophysical Research 113: C03016.

    Google Scholar 

  • Wan, Y., D. Sun, and J. Labadie. 2014. Modeling evaluation of dam removal in the context of river ecosystem restoration. River Research and Applications. https://doi.org/10.1002/rra.2805.

  • Wan, Y., C. Wan, and M. Hedgepeth. 2015. Elucidating multidecadal saltwater intrusion and vegetation dynamics in a coastal floodplain with artificial neural networks and aerial photography. Ecohydrology. 8: 309–324.

    Article  Google Scholar 

  • Ward, J.V. 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8: 2–8.

    Article  Google Scholar 

  • Wilson, B.J., S. Servais, S.P. Charles, S.E. Davis, E.E. Gaiser, J.S. Kominoski, J.H. Richards, and T.G. Troxler. 2018. Declines in plant productivity drive carbon loss from brackish coastal wetland mesocosms exposed to saltwater intrusion. Estuaries and Coasts 41 (8): 2147–2158. https://doi.org/10.1007/s12237-018-0438-z.

    Article  CAS  Google Scholar 

  • Wohl, E. 2014. Rivers in the landscape: Science and management. Hoboken: Wiley.

    Google Scholar 

  • Woodroffe, C.D., K. Rogers, K.L. McKee, C.E. Lovelock, I.A. Mendelssohn, and N. Saintilan. 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science 8: 243–266.

    Article  CAS  Google Scholar 

  • Yamazaki, D., S. Kanae, H. Kim, and T. Oki. 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47: W04501. https://doi.org/10.1029/2010WR009726.1.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the South Florida Water Management District for providing data used in this study. We also thank Virginia Shervette of University of South Carolina Aiken and anonymous reviewers for their insights and suggestions. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. All data presented in this manuscript are publically available through doi:https://doi.org/10.17632/ytcnd437gg.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica C. Sullivan.

Additional information

Communicated by Brian B. Barnes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, J.C., Wan, Y. & Willis, R.A. Modeling Floodplain Inundation, Circulation, and Residence Time Under Changing Tide and Sea Levels. Estuaries and Coasts 43, 693–707 (2020). https://doi.org/10.1007/s12237-020-00709-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00709-0

Keywords

Navigation