Log in

Remote Sensing for Monitoring Potato Nitrogen Status

  • Review
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Potato (Solanum tuberosum L.) is one of the most consumed food crops in the world and plays critical roles in human and animal health. Proper nitrogen (N) management is essential to producing high tuber yield and good quality while not having detrimental impacts on the environment. Efficient in-season monitoring of plant N status can guide potato growers to apply the right amount of N fertilizer at the right time. The traditional analytical methods for monitoring are destructive, labor-intensive, time-consuming, and have poor spatio-temporal resolution. In comparison, the remote sensing (RS) technologies provide non-destructive assessments with capabilities to cover large areas with high resolution. RS monitoring employs spaceborne, airborne, and ground-based platforms with multispectral or hyperspectral sensors in which physically-based or data-driven models are used to predict and map relevant plant or agronomic measurements. However, most of the research on application of these technologies to potato N management is exploratory and not yet mature. This paper reviews 109 previously published manuscripts to provide a comprehensive review of potato reflectance characteristics, three RS platforms (spaceborne, airborne, and ground-based) and two types of optical sensors (multispectral or hyperspectral), three types of models that can predict potato N status using spectral data, how the modeling process is performed, how RS can contribute to precision N application, and challenges and future outlooks for RS technologies to be applied to commercial N management in potatoes. Overall, RS has the potential for assisting potato growers with understanding the spatio-temporal variation of their crop N status, and fine-tuning their N application to avoid excessive or unnecessary use of fertilizer, so eventually N leaching and groundwater contamination can be reduced.

Resumen

La papa (Solanum tuberosum L.) es uno de los cultivos alimenticios más consumidos en el mundo y juega un papel crítico en la salud humana y animal. El manejo adecuado del nitrógeno (N) es esencial para producir alto rendimiento de tubérculos y buena calidad, sin tener impactos perjudiciales en el medio ambiente. El monitoreo eficiente durante el ciclo del cultivo del estado de N de la planta puede guiar a los productores de papa a aplicar la cantidad correcta de fertilizante de N en el momento correcto. Los métodos analíticos tradicionales para el monitoreo son destructivos, requieren mucha mano de obra, requieren mucho tiempo y tienen una resolución espacio-temporal pobre. En comparación, las tecnologías de teledetección (RS) proporcionan evaluaciones no destructivas con capacidades para cubrir grandes áreas con alta resolución. El monitoreo RS emplea plataformas espaciales, aéreas y terrestres con sensores multiespectrales o hiperespectrales en los que se utilizan modelos físicos o basados en datos para predecir y mapear mediciones agronómicas o de plantas relevantes. Sin embargo, la mayor parte de la investigación sobre la aplicación de estas tecnologías al manejo del N de la papa es exploratoria y aún no está consolidada. Esta revisión incluye 109 manuscritos publicados previamente para proporcionar una revisión exhaustiva de las características de reflectancia de la papa, tres plataformas RS (espaciales, aéreas y terrestres) y dos tipos de sensores ópticos (multiespectrales o hiperespectrales), tres tipos de modelos que pueden predecir el estado de N de la papa utilizando datos espectrales, cómo se realiza el proceso de modelado, cómo RS puede contribuir a la aplicación precisa de N, y los desafíos y perspectivas futuras para las tecnologías RS que se aplicarán a la gestión comercial de N en papas. En general, RS tiene el potencial de ayudar a los productores de papa a comprender la variación espacio-temporal del estado de N de cultivo, y ajustar su aplicación de N para evitar el uso excesivo o innecesario de fertilizantes, de modo que eventualmente se pueda reducir la lixiviación de N y la contaminación del agua subterránea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd Elhady, A.S., G.A. Hany, M.F. El-Gawad, I.S. Mukherjee, A. Elkelish, E. Azab, A. Adil, R. Farag, H.A. Ibrahim, and N.A. El-Azm. 2021. Hydrogen peroxide supplementation in irrigation water alleviates drought stress and boosts growth and productivity of potato plants. Sustainability (Switzerland) 13 (2): 1–16. https://doi.org/10.3390/su13020899.

    Article  CAS  Google Scholar 

  • Adão, T., J.H.L. Pádua, J. Bessa, E. Peres, and R. Morais. 2017. Hyperspectral imaging: a review on uav-based sensors, data processing and applications for agriculture and forestry. Remote Sensing 9 (11): 1110.

    Article  Google Scholar 

  • Adrian, A.M., S.H. Norwood, and P.L. Mask. 2005. Producers’ perceptions and attitudes toward precision agriculture technologies. Computers and Electronics in Agriculture 48: 256–271.

    Article  Google Scholar 

  • Al-Gaadi, K.A., A.H. Abdalhaleem, E. Tola, A.G. Kayad, R. Madugundu, B. Alblewi, and F. Assiri. 2016. Prediction of potato crop yield using precision agriculture techniques. PLoS One 11 (9): 1–16. https://doi.org/10.1371/journal.pone.0162219.

    Article  CAS  Google Scholar 

  • Ali, I., F. Cawkwell, E. Dwyer, and S. Green. 2016. Modeling managed grassland biomass estimation by using multitemporal remote sensing data—a machine learning approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10: 3254–3264.

    Article  Google Scholar 

  • Alva, L. 2004. Potato nitrogen management. Journal of Vegetable Crop Production 10 (1): 97–132.

    Article  Google Scholar 

  • Amatya, S., M. Karkee, A. Gongal, Q. Zhang, and M.D. Whiting. 2015. Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting. Biosystems Engineering 146: 3–15.

    Article  Google Scholar 

  • Argento, F., T.A. Anken, F. Vogelsanger, E.A. Walter, and F. Liebisch. 2021. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. Precision Agriculture 22 (2): 364–386.

    Article  CAS  Google Scholar 

  • Baugher, T.A., J. Schupp, K. Ellis, J. Remcheck, E. Winzeler, R. Duncan, S. Johnson, K. Lewis, G. Reighard, G. Henderson, M. Norton, A. Dhaddey, and P. Heinemann. 2010. String blossom thinner designed for variable tree forms increases crop load management efficiency in trials in four united states peach-growing regions. HortTechnology 20: 409–414.

    Article  Google Scholar 

  • Berger, K., J. Verrelst, J.B. Féret, Z. Wang, M. Wocher, M. Strathmann, M. Danner, W. Mauser, and T. Hank. 2020. Crop nitrogen monitoring: recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment 242 (March): 111758. https://doi.org/10.1016/j.rse.2020.111758.

    Article  Google Scholar 

  • Binch, A., and C.W. Fox. 2017. Controlled comparison of machine vision algorithms for rumex and urtica detection in grassland. Computers and Electronics in Agriculture 140: 123–138.

    Article  Google Scholar 

  • Bohman, B. J., and J. R. Carl, and J.M. David. 2018. Evaluating remote sensing based adaptive nitrogen management for potato production.  In 14th International Conference on Precision Agriculture, pp. 1–6.

  • Borhan, M.S., S. Panigrahi, M.A. Satter, and H. Gu. 2017. Evaluation of computer imaging technique for predicting the spad readings in potato leaves. Information Processing in Agriculture 4 (4): 275–282.

    Article  Google Scholar 

  • Bussan, A. J., R. Sabba, and M. Drilias. 2009. Tuber maturation and potato storability: optimizing skin set, sugars, and solids. Division of Cooperative Extension of the University of Wisconsin–Extension.

  • Burns, B.W., V.S. Green, A.A. Hashem, J.H. Massey, A.M. Shew, M.A.A. Adviento-Borbe, and M. Milad. 2022. Determining nitrogen deficiencies for maize using various remote sensing indices. Precision Agriculture 23 (3): 791–811.

    Article  CAS  Google Scholar 

  • Cai, Y., K. Guan, E. Nafziger, G. Chowdhary, B. Peng, Z. **, S. Wang, and S. Wang. 2019. Detecting in-season crop nitrogen stress of corn for field trials using uav-and cubesat-based multispectral sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12 (12): 5153–5166. https://doi.org/10.1109/JSTARS.2019.2953489.

    Article  Google Scholar 

  • Cao, Y., K. Jiang, J. Wu, F. Yu, W. Du, and T. Xu. 2020. Inversion modeling of japonica rice canopy chlorophyll content with uav hyperspectral remote sensing. PLoS One 15 (9 September): 1–15. https://doi.org/10.1371/journal.pone.0238530.

    Article  CAS  Google Scholar 

  • Chang, J., and D. Clay. 2016. Matching remote sensing to problems. In iGrow Corn: Best Management Practices, pp. 1–22.

  • Chung, C.L., K.J. Huang, S.Y. Chen, M.H. Lai, Y.C. Chen, and Y.F. Kuo. 2016. Detecting bakanae disease in rice seedlings by machine vision. Computers and Electronics in Agriculture 121: 404–411.

    Article  Google Scholar 

  • Clevers, J., and L. Kooistra. 2012. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. Article in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 (2): 574–583.

    Google Scholar 

  • Cohen, Y., V. Alchanatis, Y. Zusman, Z. Dar, D. J. Bonfil, A. Karnieli, A. Zilberman, A. Moulin, V. Ostrovsky, and A. Levi, and others. 2010. Leaf nitrogen estimation in potato based on spectral data and on simulated bands of the venµs satellite. Precision Agriculture 11(5): 520–37.

  • Curran, P.J. 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment 30 (3): 271–278.

    Article  Google Scholar 

  • De Souza, R., M.T. Peña-Fleitas, R.B. Thompson, M. Gallardo, and F.M. Padilla. 2020. Assessing performance of vegetation indices to estimate nitrogen nutrition index in pepper. Remote Sensing 12 (5): 763.

    Article  Google Scholar 

  • Delegido, J., J. Verrelst, C.M. Meza, J.P. Rivera, L. Alonso, and J. Moreno. 2013. A red-edge spectral index for remote sensing estimation of green lai over agroecosystems. European Journal of Agronomy 46: 42–52.

    Article  Google Scholar 

  • Ebrahimi, M.A., M.H. Khoshtaghaza, S. Minaei, and B. Jamshidi. 2017. Vision-based pest detection based on svm classification method. Computers and Electronics in Agriculture 137: 52–58.

  • El-Shikha, D.M., E.M. Barnes, T.R. Clarke, D.J. Hunsaker, J.A. Haberland, J.P.J. Pinter, and T.L. Thompson. 2008. Remote sensing of cotton nitrogen status using the canopy chlorophyll content index (CCCI). Transactions of the ASABE 51 (1): 73–82.

    Article  CAS  Google Scholar 

  • Elvanidi, A., N. Katsoulas, and C. Kittas. 2018. Automation for water and nitrogen deficit stress detection in soilless tomato crops based on spectral indices. Horticulturae 4(4). https://doi.org/10.3390/horticulturae4040047.

  • FAO - Potato. 2019. Food and Agriculture Organization of the United Nations. https://www.fao.org/land-water/databases-and-software/crop-information/potato/en/.

  • Fiorentini, marco, stefano zenobi, and roberto orsini. 2021. Remote and proximal sensing applications for durum wheat nutritional status detection in mediterranean area. Agriculture (Switzerland) 11(1): 1–18. https://doi.org/10.3390/agriculture11010039.

  • Fortin, J.G., F. Anctil, and L.E. Parent. 2014. Comparison of multiple-layer perceptrons and least squares support vector machines for remote-sensed characterization of in-field lai patterns – a case study with potato. Canadian Journal of Remote Sensing 40 (2): 75–84. https://doi.org/10.1080/07038992.2014.928182.

    Article  Google Scholar 

  • Franceschini, M. H. D., H. Bartholomeus, D. Apeldoorn, J. Suomalainen, and L. Kooistra. 2017. Intercomparison of unmanned aerial vehicle and ground-based narrow band spectrometers applied to crop trait monitoring in organic potato production. Sensors (Switzerland) 17(6). https://doi.org/10.3390/s17061428.

  • García-Berná, J. A., S. Ouhbi, B. Benmouna, G. García-Mateos, and J. L. Fernández-Alemán, and J.M. Molina-Martínez. 2020. Systematic map** study on remote sensing in agriculture. Applied Sciences (Switzerland) 10(10). https://doi.org/10.3390/app10103456.

  • Gautam, D., and V. Pagay. 2020. A review of current and potential applications of remote sensing to study thewater status of horticultural crops. Agronomy 10 (1): 1–35. https://doi.org/10.3390/agronomy10010140.

    Article  Google Scholar 

  • Geladi, P., and R.B. Kowalski. 1986. Partial least-squares regression: a tutorial. Analytica Chimica Acta 185: 1–17.

    Article  CAS  Google Scholar 

  • Goffart, J.P., M. Olivier, and M. Frankinet. 2011. Crop nitrogen status assessment tools in a decision support system for nitrogen fertilization management of potato crops. HortTechnology 21 (3): 282–286. https://doi.org/10.21273/horttech.21.3.282.

    Article  Google Scholar 

  • Gold, K. M., A. T. Philip, I. Herrmann, and A. J. Gevens. 2020. Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning. Plant Science 295(October 2019): 110316. https://doi.org/10.1016/j.plantsci.2019.110316.

  • Gómez, D., P. Salvador, J. Sanz, and J.L. Casanova. 2019. Potato yield prediction using machine larning techniques and sentinel 2 data. Remote Sensing 11: 1–17.

    Article  Google Scholar 

  • Gregersen, P.L., A. Culetic, L. Boschian, and K. Krupinska. 2013. Plant senescence and crop productivity. Plant Molecular Biology 82 (6): 603–622.

    Article  CAS  Google Scholar 

  • Haboudane, D., N. Tremblay, J.R. Miller, and P. Vigneault. 2008. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing 46 (2): 423–437.

    Article  Google Scholar 

  • Herrmann, I., A. Pimstein, A. Karnieli, Y. Cohen, V. Alchanatis, and D.J. Bonfil. 2011. LAI assessment of wheat and potato crops by venµs and sentinel-2 bands. Remote Sensing of Environment 115 (8): 2141–2151.

    Article  Google Scholar 

  • Herrmann, I., A. Karnieli, D.J. Bonfil, Y. Cohen, and V. Alchanatis. 2010. SWIR-based spectral indices for assessing nitrogen content in potato fields. International Journal of Remote Sensing 31 (19): 5127–5143.

    Article  Google Scholar 

  • Homolová, L., Z. Malenovský, J.P.W. Clevers, G. García-Santos, and M.E. Schaepman. 2013. Review of optical-based remote sensing for plant trait map**. Ecological Complexity 15: 1–16. https://doi.org/10.1016/j.ecocom.2013.06.003.

    Article  Google Scholar 

  • Hu, H., L. Pan, K. Sun, S. Tu, Y. Sun, K. Wei, and Y. Tu. 2017. Differentiation of deciduous-calyx and persistent-calyx pears using hyperspectral reflectance imaging and multivariate analysis. Computers and Electronics in Agriculture 137: 150–156.

    Article  Google Scholar 

  • Hunt, E.R., A.D. Horneck, C.B. Spinelli, R.W. Turner, A.E. Bruce, D.J. Gadler, J.J. Brungardt, and P.B. Hamm. 2018. Monitoring nitrogen status of potatoes using small unmanned aerial vehicles. Precision Agriculture 19 (2): 314–333. https://doi.org/10.1007/s11119-017-9518-5.

    Article  Google Scholar 

  • Inoue, Y., M. Guérif, F. Baret, A. Skidmore, A. Gitelson, M. Schlerf, R. Darvishzadeh, and A. Olioso. 2016. Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation. Plant Cell and Environment 39 (12): 2609–2623. https://doi.org/10.1111/pce.12815.

    Article  CAS  Google Scholar 

  • Jensen, J.R. 2014. Remote sensing of the environment: an Earth Resource Perspective. London, UK: Second.

    Google Scholar 

  • Jia, B., W. Wang, X. Ni, K.C. Lawrence, H. Zhuang, S.C. Yoon, and Z. Gao. 2020. Essential processing methods of hyperspectral images of agricultural and food products. Chemometrics and Intelligent Laboratory Systems 198: 103936.

    Article  CAS  Google Scholar 

  • Khaled, A. Y., A. C. Parrish, and A. Adedeji. 2021. Emerging nondestructive approaches for meat quality and safety evaluation—a review. Comprehensive Reviews in Food Science and Food Safety (October 2020): 1–26. https://doi.org/10.1111/1541-4337.12781.

  • Khaled, A.Y., S.A. Aziz, S.K. Bejo, N.M. Nawi, D. Jamaludin, and N.U.A. Ibrahim. 2020. A comparative study on dimensionality reduction of dielectric spectral data for the classification of basal stem rot (BSR) disease in oil palm. Computers and Electronics in Agriculture 170: 105288.

    Article  Google Scholar 

  • Khaled, A.Y., S.A. Aziz, S.K. Bejo, N.M. Nawi, and I.A. Seman. 2018a. Spectral features selection and classification of oil palm leaves infected by basal stem rot (BSR) disease using dielectric spectroscopy. Computers and Electronics in Agriculture 144: 297–309.

    Article  Google Scholar 

  • Khaled, A.Y., S.A. Aziz, S.K. Bejo, N.M. Nawi, I.A. Seman, and M.A. Izzuddin. 2018b. Development of classification models for basal stem rot (bsr) disease in oil palm using dielectric spectroscopy. Industrial Crops and Products 124: 99–107.

    Article  CAS  Google Scholar 

  • Khaled, A.Y., S.A. Aziz, S.K. Bejo, N.M. Nawi, I.A. Seman, and D.I. Onwude. 2018c. Early detection of diseases in plant tissue using spectroscopy–applications and limitations. Applied Spectroscopy Reviews 53 (1): 36–64. https://doi.org/10.1080/05704928.2017.1352510.

    Article  Google Scholar 

  • Khanal, S., K. Kc, P.J. Fulton, S. Shearer, and E. Ozkan. 2020. Remote sensing in agriculture — accomplishments, limitations, and opportunities. Remote Sensing 12 (1): 3783.

    Article  Google Scholar 

  • Kokaly, R. 1999. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment 67 (3): 267–287. https://doi.org/10.1016/S0034-4257(98)00084-4.

    Article  Google Scholar 

  • Koundouri, P., C. Nauges, and V. Tzouvelekas. 2006. Technology adoption under production uncertainty: theory and application to irrigation technology. American Journal of Agricultural Economics 88: 657–670.

    Article  Google Scholar 

  • Kraft, G.J., and W. Stites. 2003. Nitrate impacts on groundwater from irrigated-vegetable systems in a humid north-central us sand plain. Agriculture Ecosystems \& Environment 100 (1): 63–74.

    Article  CAS  Google Scholar 

  • Kung, H.Y., T.H. Kuo, C.H. Chen, and P.Y. Tsai. 2016. Accuracy analysis mechanism for agriculture data using the ensemble neural network method. Sustainability 8: 735.

    Article  Google Scholar 

  • Lamb, D.W., M. Steyn-Ross, P. Schaare, M.M. Hanna, W. Silvester, and A. Steyn-Ross. 2002. Estimating leaf nitrogen concentration in ryegrass (lolium spp.) pasture using the chlorophyll red-edge: theoretical modelling and experimental observations. International Journal of Remote Sensing 23 (18): 3619–3648.

    Article  Google Scholar 

  • Li, B., X. Xu, L. Zhang, J. Han, C. Bian, G. Li, J. Liu, and L. **. 2020. Above-ground biomass estimation and yield prediction in potato by using uav-based RGB and hyperspectral imaging. ISPRS Journal of Photogrammetry and Remote Sensing 162 (May 2019): 161–172. https://doi.org/10.1016/j.isprsjprs.2020.02.013.

    Article  Google Scholar 

  • Li, D., Y. Miao, S.K. Gupta, C.J. Rosen, F. Yuan, C. Wang, and Y. Huang. 2021. Improving potato yield prediction by combining cultivar information and UAV remote sensing data using machine learning. Remote Sensing 13 (16): 3322.

    Article  Google Scholar 

  • Liu, N., P.A. Townsend, M.R. Naber, P.C. Bethke, W.B. Hills, and Y. Wang. 2021. Hyperspectral imagery to monitor crop nutrient status within and across growing seasons. Remote Sensing of Environment 255: 112303.

    Article  Google Scholar 

  • Liu, N., Z. **ng, R. Zhao, L. Qiao, M. Li, G. Liu, and H. Sun. 2020. Analysis of chlorophyll concentration in potato crop by coupling continuous wavelet transform and spectral variable optimization. Remote Sensing 12 (17): 1–22. https://doi.org/10.3390/rs12172826.

    Article  Google Scholar 

  • Lu, B., D.P. Dao, J. Liu, Y. He, and J. Shang. 2020. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing 12 (16): 1–44. https://doi.org/10.3390/RS12162659.

    Article  Google Scholar 

  • Luo, S., Y. He, Q. Li, W. Jiao, Y. Zhu, and X. Zhao. 2020. Nondestructive estimation of potato yield using relative variables derived from multi-period LAI and hyperspectral data based on weighted growth stage. Plant Methods 16 (1): 1–14. https://doi.org/10.1186/s13007-020-00693-3.

    Article  CAS  Google Scholar 

  • Maes, W.H., and K. Steppe. 2019. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in Plant Science 24 (2): 152–164. https://doi.org/10.1016/j.tplants.2018.11.007.

    Article  CAS  Google Scholar 

  • Maione, C., B.L. Batista, A.D. Campiglia, F. Barbosa, and R.M. Barbosa. 2016. Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry. Computers and Electronics in Agriculture 121: 101–107.

    Article  Google Scholar 

  • Marques, A.P., L.P. Osco, D.E.G. Furuya, W.N. Gonçalves, D.C. Santana, L.P.R. Teodoro, C.A.S. Junior, G.F. Capristo-Silva, J. Li, F.H.R. Baio, J.M. Junior, P.E. Teodoro, and H. Pistori. 2020. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Computers and Electronics in Agriculture 178 (September): 105791. https://doi.org/10.1016/j.compag.2020.105791.

    Article  Google Scholar 

  • Morier, T., A.N. Cambouris, and K. Chokmani. 2015. In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop. Agronomy Journal 107 (4): 1295–1309. https://doi.org/10.2134/agronj14.0402.

    Article  Google Scholar 

  • Munnaf, M. A., G. Haesaert, and A. M. Mouazen. 2021. Map-based site-specific seeding of seed potato production by fusion of proximal and remote sensing data.” Soil and Tillage Research 206(October 2020): 104801. https://doi.org/10.1016/j.still.2020.104801.

  • Muñoz-Huerta, R.F., R.G. Guevara-Gonzalez, L.M. Contreras-Medina, I. Torres-Pacheco, J. Prado-Olivarez, and R.V. Ocampo-Velazquez. 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors (Switzerland) 13 (8): 10823–10843. https://doi.org/10.3390/s130810823.

    Article  CAS  Google Scholar 

  • Nigon, T.J., J.D. Mulla, C.J. Rosen, Y. Cohen, V. Alchanatis, J. Knight, and R. Rud. 2015. Hyperspectral aerial imagery for detecting nitrogen stress in two potato cultivars. Computers and Electronics in Agriculture 112: 36–46. https://doi.org/10.1016/j.compag.2014.12.018.

    Article  Google Scholar 

  • Nigon, T.J., D.J. Mulla, C.J. Rosen, Y. Cohen, V. Alchanatis, and R. Rud. 2014. Evaluation of the nitrogen sufficiency index for use with high resolution, broadband aerial imagery in a commercial potato field. Precision Agriculture 15 (2): 202–226. https://doi.org/10.1007/s11119-013-9333-6.

    Article  Google Scholar 

  • Nigon, T. J. 2012. Aerial imagery and other non-invasive approaches to detect nitrogen and water stress in a potato crop. University of Minnesota.

  • Padilla, F.M., M. Gallardo, M.T. Peña-Fleitas, R.D. Souza, and R.B. Thompson. 2018. Proximal optical sensors for nitrogen management of vegetable crops: a review. Sensors (Switzerland) 18 (7): 1–23. https://doi.org/10.3390/s18072083.

    Article  CAS  Google Scholar 

  • Pandey, P. C., P. K. Srivastava, H. Balzter, B. Bhattacharya, and G. Petropoulos. 2020. Future perspectives and challenges in hyperspectral remote sensing. Hyperspectral Remote Sensing: Theory and Applications 1st Edition. pp 7.

  • Pantazi, X.E., D. Moshou, T.K. Alexandridis, R.L. Whetton, and A.M. Mouazen. 2016. Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture 121: 57–65.

    Article  Google Scholar 

  • Pantazi, X.E., D. Moshou, R. Oberti, J. West, A.M. Mouazen, and D. Bochtis. 2017. Detection of biotic and abiotic stresses in crops by using hierarchical self organizing classifiers. Precision Agriculture 18: 383–393.

    Article  Google Scholar 

  • Parent, J.R., J.C. Volin, and D.L. Civco. 2015. A fully-automated approach to land cover map** with airborne lidar and high resolution multispectral imagery in a forested suburban landscape. ISPRS Journal of Photogrammetry and Remote Sensing 104: 18–29. https://doi.org/10.1016/j.isprsjprs.2015.02.012.

    Article  Google Scholar 

  • Parreiras, T.C., G.H.E. Lense, R.S. Moreira, D.B. Santana, and R.L. Mincato. 2020. Using unmanned aerial vehicle and machine learning algorithm to monitor leaf nitrogen in coffee. Coffee Science 15 (1): 1–9. https://doi.org/10.25186/.v15i.1736.

    Article  Google Scholar 

  • Peng, J., K. Manevski, K. Kørup, R. Larsen, and M.N. Andersen. 2021a. Random forest regression results in accurate assessment of potato nitrogen status based on multispectral data from different platforms and the critical concentration approach. Field Crops Research 268 (May): 1–13. https://doi.org/10.1016/j.fcr.2021.108158.

    Article  Google Scholar 

  • Peng, J., K. Manevski, K. Kørup, R. Larsen, Z. Zhou, and M.N. Andersen. 2021b. Environmental constraints to net primary productivity at northern latitudes: a study across scales of radiation interception and biomass production of potato. International Journal of Applied Earth Observation and Geoinformation 94: 102232. https://doi.org/10.1016/j.jag.2020.102232.

    Article  Google Scholar 

  • Pritchard, M.K., and L.R. Adam. 1994. Relationships between fry color and sugar concentration in stored russet burbank and shepody potatoes. American Potato Journal 71 (1): 59–68.

    Article  Google Scholar 

  • Qin, J., K. Chao, M.S. Kim, R. Lu, and T.F. Burks. 2013. Hyperspectral and multispectral imaging for evaluating food safety and quality. Journal of Food Engineering 118 (2): 157–171.

    Article  CAS  Google Scholar 

  • Qun’ou, J., X. Lidan, S. Siyang, W. Meilin, and X. Huijie. 2021. Retrieval model for total nitrogen concentration based on uav hyper spectral remote sensing data and machine learning algorithms – a case study in the miyun reservoir, China. Ecological Indicators 124: 107356. https://doi.org/10.1016/j.ecolind.2021.107356.

    Article  CAS  Google Scholar 

  • Reichardt, M., and C. Jürgens. 2009. Adoption and future perspective of precision farming in germany: results of several surveys among different agricultural target groups. Precision Agriculture 10: 73–94.

    Article  Google Scholar 

  • Rens, L., L. Zotarelli, A. Alva, D. Rowland, G. Liu, and K. Morgan. 2016. Fertilizer nitrogen uptake efficiencies for potato as influenced by application timing. Nutrient Cycling in Agroecosystems 104 (2): 175–185.

    Article  CAS  Google Scholar 

  • Rodriguez, D., G.J. Fitzgerald, R. Belford, and L.K. Christensen. 2006. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. ” Australian Journal of Agricultural Research 57 (7): 781–789.

    Article  CAS  Google Scholar 

  • Rondeaux, G., M. Steven, and F. Baret. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55 (2): 95–107.

    Article  Google Scholar 

  • Roosjen, P. P. J., J. M. Suomalainen, H. M. Bartholomeus, L. Kooistra, and G. P. W. Clevers. 2017. Map** reflectance anisotropy of a potato canopy using aerial images acquired with an unmanned aerial vehicle. Remote Sensing 9(5). https://doi.org/10.3390/rs9050417.

  • Rouse, J.W., R.H. Haas, D.W. Deering, J.A. Schell, and J.C. Harlan. 1973. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor]. https://ntrs.nasa.gov/api/citations/19730017588/downloads/19730017588.pdf.

  • Samuel, A.L. 1959. Some studies in machine learning using the game of checkers. Ibm Journal Of Research And Development 44: 206–226.

    Article  Google Scholar 

  • Sassenrath, G.F., P. Heilman, E. Luschei, G.L. Bennett, G. Fitzgerald, P. Klesius, W. Tracy, J.R. Williford, and P.V. Zimba. 2008. Technology, complexity and change in agricultural production systems. Renewable Agriculture and Food Systems 23: 285–295.

    Article  Google Scholar 

  • Sengupta, S., and W.S. Lee. 2014. Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions. Biosystems Engineering 117: 51–61.

    Article  Google Scholar 

  • Stalham, M.A., and E.J. Allen. 2001. Effect of variety, irrigation regime and planting date on depth, rate, duration and density of root growth in the potato (solanum tuberosum) crop. The Journal of Agricultural Science 137 (3): 251–270.

    Article  Google Scholar 

  • Tsagris, M., and N. Pandis. 2021. Multicollinearity. American Journal of Orthodontics and Dentofacial Orthopedics 159 (5): 695–696.

    Article  Google Scholar 

  • Tsouros, D.C., S. Bibi, and P.G. Sarigiannidis. 2019. A review on uav-based applications for precision agriculture. Information (Switzerland) 10 (11): 1–26. https://doi.org/10.3390/info10110349.

    Article  Google Scholar 

  • Verrelst, J., G. Camps-Valls, J. Muñoz-Mari, J.P. Rivera, F. Veroustraete, J.G.P.W. Clevers, and J. Moreno. 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties-a review. ISPRS Journal of Photogrammetry and Remote Sensing 108: 273–290.

    Article  Google Scholar 

  • Vidal, M., and J.M. Amigo. 2012. Pre-processing of hyperspectral images: essential steps before image analysis. Chemometrics and Intelligent Laboratory Systems 117: 138–148.

    Article  CAS  Google Scholar 

  • Wang, J., J. Zhang, Y. Bai, S. Zhang, S. Yang, and F. Yao. 2020. Integrating remote sensing-based process model with environmental zonation scheme to estimate rice yield gap in northeast China. Field Crops Research 246 (9): 107682. https://doi.org/10.1016/j.fcr.2019.107682.

    Article  Google Scholar 

  • Wang, S., A. Baum, P.J. Zarco-Tejada, C. Dam-Hansen, A. Thorseth, P. Bauer-Gottwein, F. Bandini, and M. Garcia. 2019. Unmanned aerial system multispectral map** for low and variable solar irradiance conditions: potential of tensor decomposition. ISPRS Journal of Photogrammetry and Remote Sensing 155: 58–71.

    Article  Google Scholar 

  • Wang, S., K. Guan, Z. Wang, E.A. Ainsworth, T. Zheng, P.A. Townsend, and C. Jiang. 2021. Airborne hyperspectral imaging of nitrogen deficiency on crop traits and yield of maize by machine learning and radiative transfer modeling. International Journal of Applied Earth Observation and Geoinformation 105: 102617.

    Article  Google Scholar 

  • Westermann, D.T., and G.E. Kleinkopf. 1985. Nitrogen requirements of potatoes. Agronomy Journal 77: 616–621.

    Article  Google Scholar 

  • ** of soil total nitrogen using google earth engine across the shandong province of China. Sustainability (Switzerland) 12 (24): 1–20. https://doi.org/10.3390/su122410274.

    Article  CAS  Google Scholar 

  • Xu, C., R. Fisher, S.D. Wullschleger, C.J. Wilson, M. Cai, and N.G. McDowell. 2012. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. PLoS One1 7 (5): 1–11. https://doi.org/10.1371/journal.pone.0037914.

    Article  CAS  Google Scholar 

  • Xu, J., B. Gu, and G. Tian. 2022. Review of agricultural iot technology. Artificial Intelligence in Agriculture 6: 10–22.

    Article  CAS  Google Scholar 

  • Yousuf, T., R. Mahmoud, F. Aloul, and I. Zualkernan. 2015. Internet of things (IoT) security: current status, challenges and countermeasures. International Journal for Information Security Research (IJISR) 5 (4): 608–616.

    Article  Google Scholar 

  • Yousfi, S., J. F. M. Peira, G. R. Horra, and P. V. M. Ablanque. 2019. Remote sensing: useful approach for crop nitrogen management and sustainable agriculture. In M. Hasanuzzaman, M.C.M.T. Filho, M. Fujita, and T.A.R. Nogueira (Eds.), Sustainable Crop Production. IntechOpen.

  • Yu, F., S. Feng, W. Du, D. Wang, Z. Guo, S. **ng, and T. Xu. 2020. A study of nitrogen deficiency inversion in rice leaves based on the hyperspectral reflectance differential. Frontiers in Plant Science 11: 573272.

    Article  Google Scholar 

  • Yu, Y., Y. Jiao, W. Yang, C. Song, J. Zhang, and Y. Liu. 2022. Mechanisms underlying nitrous oxide emissions and nitrogen leaching from potato fields under drip irrigation and furrow irrigation. Agricultural Water Management 260: 107270.

    Article  Google Scholar 

  • Zha, H., Y. Miao, T. Wang, Y. Li, J. Zhang, and W. Sun. 2020. Sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sensing 12 (215): 1–22.

    Google Scholar 

  • Zhang, C., A. Marzougui, and S. Sankaran. 2020. High-resolution satellite imagery applications in crop phenoty**: an overview. Computers and Electronics in Agriculture 175 (June): 105584. https://doi.org/10.1016/j.compag.2020.105584.

    Article  Google Scholar 

  • Zhao, H., X. Song, G. Yang, Z. Li, D. Zhang, and H. Feng. 2019. Monitoring of nitrogen and grain protein content in winter wheat based on sentinel-2a data. Remote Sensing 11(14). https://doi.org/10.3390/rs11141724.

  • Zhao, J., C. D. Notaris, and J. E. Olesen. 2020. Autumn-based vegetation indices for estimating nitrate leaching during autumn and winter in arable crop** systems.” Agriculture, Ecosystems and Environment 290(May 2019): 106786. https://doi.org/10.1016/j.agee.2019.106786.

  • Zheng, T., N. Liu, L. Wu, M. Li, H. Sun, and Q. Zhang. 2018. Estimation of chlorophyll content in potato leaves based on spectral red edge position. IFAC-PapersOnLine 51 (17): 602–606. https://doi.org/10.1016/j.ifacol.2018.08.131.

    Article  Google Scholar 

  • Zhou, Z., F. Plauborg, A.G. Thomsen, and M.N. Andersen. 2017. A RVI/LAI-reference curve to detect n stress and guide n fertigation using combined information from spectral reflectance and leaf area measurements in potato. European Journal of Agronomy 87 (November 2016): 1–7. https://doi.org/10.1016/j.eja.2017.04.002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 34.2 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhaled, A., Townsend, P.A. & Wang, Y. Remote Sensing for Monitoring Potato Nitrogen Status. Am. J. Potato Res. 100, 1–14 (2023). https://doi.org/10.1007/s12230-022-09898-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-022-09898-9

Keywords

Navigation