Log in

Research on the Crashworthiness of Composite Foam Gradient-Reinforced Carbon Fiber Tubes

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Due to the excellent energy-absorbing properties of the tubular structures, they are commonly used as energy-absorbing elements. In this paper, two types of hollow glass microspheres (HGMs) are mixed with epoxy resin to prepare composite foams. Three densities of composite foams were used as reinforcing materials for carbon fiber tubes (CFRTs). The CFRTs were reinforced with uniform and gradient structures (A, X, O). The axial compression tests were conducted under quasi-static loading to observe the mechanical properties, failure modes, and crashworthiness. The specific energy absorption (SEA) of the CFRTs reinforced with gradient  structures to compare with metal energy-absorbing structures. The distribution and fragmentation of HGMs in the epoxy resin by were observed using a scanning electron microscope (SEM). The results show the C20/60 exhibits the highest peak force (PF) of 85.17 kN. Different types of composite foam and gradient designs have different effects on the structure’s failure modes, including tearing of the tube walls, shearing, and compression failure of the core. The SEM observed the HGMs of C20 are the most broken. The X-gradient composite foam-filled tube demonstrates superior crashworthiness compared to C20/60, except for the PF. The energy absorption (EA), SEA, meaning crushing force (MCF), and crushing force efficiency (CFE) have improved by 9.8%, 17.1%, 9.8%, and 25.9%, respectively. The SEA of X is higher than the aluminum round tube, the aluminum alloy secondary nested square tube, and the magnesium round tube, the value is 3.6, 2.7, and 1.3 times, respectively. Therefore, the composite foam-reinforced CFRTs are an ideal energy-absorbing configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

All the data are within the paper.

References

  1. Jones N. Structural Impact. 2nd ed. Cambridge University Press; 2011. https://doi.org/10.1017/CBO9780511820625.

  2. M.M. Basit, S.S. Cheon, Time-dependent crashworthiness of polyurethane foam. Mech. Time-Depen d. Mater. 23, 207–221 (2019). https://doi.org/10.1007/s11043-018-9391-2

    Article  CAS  Google Scholar 

  3. S.-F. Hwang, C.-Y. Wu, H.-K. Liu, Crashworthiness of aluminum-composite hybrid tubes. Appl. Compos. Mater. 28, 409–426 (2021). https://doi.org/10.1007/s10443-020-09851-1

    Article  CAS  Google Scholar 

  4. X. Xu, Y. Zhang, J. Wang, F. Jiang, C.H. Wang, Crashworthiness design of novel hierarchical hexagonal columns. Compos. Struct. 194, 36–48 (2018). https://doi.org/10.1016/j.compstruct.2018.03.099

    Article  Google Scholar 

  5. S. Yao, Z. Li, W. Ma, P. Xu, Crashworthiness analysis of a straight-tapered shrink tube. Int. J. Mech. Sci. 157–158, 512–527 (2019). https://doi.org/10.1016/j.ijmecsci.2019.04.058

    Article  Google Scholar 

  6. Y. Zhang, P. Ge, M. Lu, X. Lai, Crashworthiness study for multi-cell composite filling structures. Int. J. Crashworthiness 23, 32–46 (2018). https://doi.org/10.1080/13588265.2017.1304169

    Article  Google Scholar 

  7. S. Parvin, M. Mumthaz, Study on impact performance of metamaterial energy absorbing devices. Int. J. Res. Appl. Sci. Eng. Technol. 11, 2194–2199 (2023). https://doi.org/10.22214/ijraset.2023.49925

    Article  Google Scholar 

  8. F. Huang, X. Zhou, D. Zhou, Y. Tao, Crashworthiness analysis of bio-inspired hierarchical circular tube under axial crushing. J. Mater. Sci. 58, 101–123 (2023). https://doi.org/10.1007/s10853-022-07982-3

    Article  CAS  Google Scholar 

  9. A. Baroutaji, M. Sajjia, A.-G. Olabi, On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. Thin-Walled Struct. 118, 137–163 (2017). https://doi.org/10.1016/j.tws.2017.05.018

    Article  Google Scholar 

  10. M. Hajjari, R. Jafari Nedoushan, T. Dastan, M. Sheikhzadeh, W.-R. Yu, Lightweight weft-knitted tubular lattice composite for energy absorption applications: an experimental and numerical study. Int. J. Solids Struct. 213, 77–92 (2021). https://doi.org/10.1016/j.ijsolstr.2020.12.017

    Article  CAS  Google Scholar 

  11. W. Hong, C. Lai, H. Fan, Frusta structure designing to improve quasi-static axial crushing performances of triangular tubes. Int. J. Steel Struct. 16, 257–266 (2016). https://doi.org/10.1007/s13296-016-3019-7

    Article  Google Scholar 

  12. W. Li, C. Lai, H. Fan, Combination of taper and hierarchy to improve crushing efficiency of thin-walled tubes. Int. J. Appl. Mech. 10, 1850092 (2018). https://doi.org/10.1142/S1758825118500928

    Article  Google Scholar 

  13. A. Othman, S. Abdullah, A.K. Ariffin, N.A.N. Mohamed, Investigating the crushing behavior of quasi-static oblique loading on polymeric foam filled pultruded composite square tubes. Compos. B Eng. 95, 493–514 (2016). https://doi.org/10.1016/j.compositesb.2016.04.027

    Article  CAS  Google Scholar 

  14. R.D. Hussein, D. Ruan, G. Lu, An analytical model of square CFRP tubes subjected to axial compression. Compos. Sci. Technol. 168, 170–178 (2018). https://doi.org/10.1016/j.compscitech.2018.09.019

    Article  Google Scholar 

  15. C. Reuter, K.-H. Sauerland, T. Tröster, Experimental and numerical crushing analysis of circular CFRP tubes under axial impact loading. Compos. Struct. 174, 33–44 (2017). https://doi.org/10.1016/j.compstruct.2017.04.052

    Article  Google Scholar 

  16. Q. Liu, J. Ma, X. Xu, Y. Wu, Q. Li, Load bearing and failure characteristics of perforated square CFRP tubes under axial crushing. Compos. Struct. 160, 23–35 (2017). https://doi.org/10.1016/j.compstruct.2016.10.032

    Article  Google Scholar 

  17. H. Mou, Z. Feng, J. **e, J. Zou, K. Zhou, Experimental and numerical studies on failure and energy absorption of composite thin-walled square tubes under quasi-static compression loading. Int. J. Nonlinear Sci. Numer. Simul. 21, 623–634 (2020). https://doi.org/10.1515/ijnsns-2019-0062

    Article  Google Scholar 

  18. G. Balaji, K. Annamalai, Crushing response of square aluminium column filled with carbon fibre tubes and aluminium honeycomb. Thin-Walled Struct. 132, 667–681 (2018). https://doi.org/10.1016/j.tws.2018.07.037

    Article  Google Scholar 

  19. E. Cetin, C. Baykasoğlu, Crashworthiness of graded lattice structure filled thin-walled tubes under multiple impact loadings. Thin-Walled Struct. 154, 106849 (2020). https://doi.org/10.1016/j.tws.2020.106849

    Article  Google Scholar 

  20. R.D. Hussein, D. Ruan, G. Lu, I. Sbarski, Axial crushing behaviour of honeycomb-filled square carbon fibre reinforced plastic (CFRP) tubes. Compos. Struct. 140, 166–179 (2016). https://doi.org/10.1016/j.compstruct.2015.12.064

    Article  Google Scholar 

  21. S. Li, X. Guo, J. Liao, Q. Li, G. Sun, Crushing analysis and design optimization for foam-filled aluminum/CFRP hybrid tube against transverse impact. Compos. B Eng. 196, 108029 (2020). https://doi.org/10.1016/j.compositesb.2020.108029

    Article  CAS  Google Scholar 

  22. T.A. Sebaey, E. Mahdi, Crushing behavior of a unit cell of CFRP lattice core for sandwich structures’ application. Thin-Walled Struct. 116, 91–95 (2017). https://doi.org/10.1016/j.tws.2017.03.016

    Article  Google Scholar 

  23. N. Gan, Y. Feng, H. Yin, G. Wen, D. Wang, X. Huang, Quasi-static axial crushing experiment study of foam-filled CFRP and aluminum alloy thin-walled structures. Compos. Struct. 157, 303–319 (2016). https://doi.org/10.1016/j.compstruct.2016.08.043

    Article  Google Scholar 

  24. Y. Zhang, M. Lu, G. Sun, G. Li, Q. Li, On functionally graded composite structures for crashworthiness. Compos. Struct. 132, 393–405 (2015). https://doi.org/10.1016/j.compstruct.2015.05.034

    Article  Google Scholar 

  25. G. Sun, G. Li, S. Hou, S. Zhou, W. Li, Q. Li, Crashworthiness design for functionally graded foam-filled thin-walled structures. Mater. Sci. Eng. A 527, 1911–1919 (2010). https://doi.org/10.1016/j.msea.2009.11.022

    Article  CAS  Google Scholar 

  26. H. Yin, G. Wen, H. Fang, Q. Qing, X. Kong, J. **ao, Z. Liu, Multiobjective crashworthiness optimization design of functionally graded foam-filled tapered tube based on dynamic ensemble metamodel. Mater. Des. 55, 747–757 (2014). https://doi.org/10.1016/j.matdes.2013.10.054

    Article  Google Scholar 

  27. Y. Hu, R. Mei, Z. An, J. Zhang, Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation property. Compos. Sci. Technol. 79, 64–69 (2013). https://doi.org/10.1016/j.compscitech.2013.02.015

    Article  CAS  Google Scholar 

  28. T. Srivastava, N.K. Katari, S. Krishna Mohan, C. Rama Krishna, B.R. Ravuri, Studies on hollow glass microsphere reinforced silicone matrix composite for use in fast curing low density thermal insulation coating applications. Fibers Polym. 23, 175–183 (2022). https://doi.org/10.1007/s12221-021-0566-0

    Article  CAS  Google Scholar 

  29. J. Jiang, Y. Cheng, Y. Liu, Q. Wang, Y. He, B. Wang, Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites. J. Mater. Chem. A 3, 4284–4290 (2015). https://doi.org/10.1039/C4TA06486K

    Article  CAS  Google Scholar 

  30. R. Wang, D. Zhuo, Z. Weng, L. Wu, X. Cheng, Y. Zhou, J. Wang, B. Xuan, A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. J. Mater. Chem. A 3, 9826–9836 (2015). https://doi.org/10.1039/C5TA00722D

    Article  CAS  Google Scholar 

  31. X. Wu, B. Tang, J. Yu, X. Cao, C. Zhang, Y. Lv, Preparation and investigation of epoxy syntactic foam (epoxy/graphite reinforced hollow epoxy macrosphere/hollow glass microsphere composite). Fibers Polym. 19, 170–187 (2018). https://doi.org/10.1007/s12221-018-7584-y

    Article  CAS  Google Scholar 

  32. Z. Zhu, Y. Liu, G. **an, Y. Wang, C. Wu, X. Peng et al., Synthesis and characterization of compound coupling agent-modified hollow glass microspheres/epoxy composites. Fibers Polym. 24, 3345–3353 (2023). https://doi.org/10.1007/s12221-023-00305-6

    Article  CAS  Google Scholar 

  33. J. Lu, S. Zhang, L. Zhang, C. Wang, C. Min, Preparation and properties of hollow glass microspheres/dicyclopentadiene phenol epoxy resin composite materials. Materials 16, 3768 (2023). https://doi.org/10.3390/ma16103768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. X. Liu, G. Wang, J. Pei, Z. Wang, Z. Wu, Fabrication and mechanical properties of a novel epoxy-hollow glass microsphere composite. J. Compos. Mater. 52, 1627–1632 (2018). https://doi.org/10.1177/0021998317730895

    Article  CAS  Google Scholar 

  35. M. Altin, M.A. Güler, S.K. Mert, The effect of percent foam fill ratio on the energy absorption capacity of axially compressed thin-walled multi-cell square and circular tubes. Int. J. Mech. Sci. 131–132, 368–379 (2017). https://doi.org/10.1016/j.ijmecsci.2017.07.003

    Article  Google Scholar 

  36. T. Tran, D. Le, A. Baroutaji, Theoretical and numerical crush analysis of multi-stage nested aluminium alloy tubular structures under axial impact loading. Eng. Struct. 182, 39–50 (2019). https://doi.org/10.1016/j.engstruct.2018.12.072

    Article  Google Scholar 

  37. Z. Li, H. Yang, X. Hu, J. Wei, Z. Han, Experimental study on the crush behavior and energy-absorption ability of circular magnesium thin-walled tubes and the comparison with aluminum tubes. Eng. Struct. 164, 1–13 (2018). https://doi.org/10.1016/j.engstruct.2018.02.083

    Article  CAS  Google Scholar 

Download references

Funding

Support from the Natural Science Foundation of Guangxi Zhuang Autonomous Region (2023JJB160061), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (2023JJB150107), the Doctoral Fund of Guangxi University of Science and Technology (21Z55), the Primary Scientific Research Ability Improvement Project of Young and Middle-aged Teachers in Guangxi universities (2023KY0361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijie Chen.

Ethics declarations

Conflict of Interest

The authors state no conflict of interest.

Ethical Approval

The research does not require ethics committee approval or any special permission.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Deng, Q., Wang, X. et al. Research on the Crashworthiness of Composite Foam Gradient-Reinforced Carbon Fiber Tubes. Fibers Polym (2024). https://doi.org/10.1007/s12221-024-00618-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12221-024-00618-0

Keywords

Navigation