Log in

New Synthetic Non-toxic Mono-azo Acid Dyes with Prominent Antibacterial Properties for Potential Application on Polyamide Fabrics

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In pursuit of improving dyeability and incorporating antimicrobial attributes into polyamide fabric, a series of mono-azo acid dyes (SN1–SN5) were synthesized. Sulfathiazole was employed as an intermediate in the synthesis process of the dyestuff. The resultant dyes were characterized by employing various analytical techniques. The antimicrobial efficiency of these colorant was established through testing against Aspergillus fumigatus, Staphylococcus aureus, and Escherichia coli, displaying a spectrum of mild to strong antibacterial activity. Dye SN5 exhibited the highest potency, showing growth inhibition of 90% and 95% against both bacterial strains, respectively. Since the acid dyes are the prime contenders for utilization in food, pharmaceuticals, and cosmetics, an assessment was conducted on BJ Human Fibroblast Cells to evaluate any plausible adverse impacts. The results revealed that all the dyes exhibited no cytotoxicity. The dyeing properties of these colorants, including color representation, build-up, exhaustion, and fixation, were thoroughly examined following their application on the fabrics. The fastness properties were found to be considerably good to excellent. The influence of acidic and alkaline conditions on the absorption maxima was also explored. The dye SN3 showed a substantial bathochromic shift with increase in the solution's acidity in comparison to other dyes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Y. Zhi-Gang, Z. Chun-**a, Z. De-Feng, H.S. Freeman, C. Pei-Tong, H. Jie, Dyes Pigm.Pigm. 81(2), 137 (2009). https://doi.org/10.1016/j.dyepig.2008.09.021

    Article  CAS  Google Scholar 

  2. D.P. Chattopadhyay, Handbook of Textile and Industrial Dyeing, in Principles, Processes and Types of Dyes. ed. by M. Clark (Woodhead Publishing, Sawston, 2011)

    Google Scholar 

  3. D.P. Chattopadhyay, Handbook of Textile and Industrial Dyeing, in Principles, Processes and Types of Dyes. ed. by M. Clark (Woodhead Publishing, Sawston, 2011), pp.515–561

    Google Scholar 

  4. V. Moody, H.L. Needles, Tufted Carpet: Textile Fibers Dyes Finishes and Processes (William Andrew, Amsterdam, 2005)

    Google Scholar 

  5. F.A. Mohamed, T.M. Tawfik, H.M. Ibrahim, Egypt. J. Chem. 66(13), 993 (2023)

    Google Scholar 

  6. J. Wu, Q. Li, W. Li, Y. Li, G. Wang, A. Li, H. Li, J. Cleaner Prod. 251, 119694 (2020). https://doi.org/10.1016/j.jclepro.2019.119694

    Article  CAS  Google Scholar 

  7. D.M. Lewis, Dyestuff fibre Int 29, 23 (1999)

    CAS  Google Scholar 

  8. S. Benkhaya, S. M’rabet, A. El Harfi, Inorg. Chem. Commun.. Chem. Commun. 115, 107891 (2020). https://doi.org/10.1016/j.inoche.2020.107891

    Article  CAS  Google Scholar 

  9. H.B. Slama, A. Chenari Bouket, Z. Pourhassan, F.N. Alenezi, A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova, P. Golińska, L. Belbahri, Appl. Sci. 11(14), 6255 (2021)

    Article  CAS  Google Scholar 

  10. F.A. Mohamed, M.S. Bashandy, H. Abd El-Wahab, M.B. Sheier, M.M. El Molla, A.H. Bedair, Int. J. Adv. Res.. J. Adv. Res. 2(7), 248 (2014)

    Google Scholar 

  11. M.A. Weaver, L. Shuttleworth, Dyes Pigm.Pigm. 3(2), 81 (1982). https://doi.org/10.1016/0143-7208(82)80016-8

    Article  CAS  Google Scholar 

  12. B. Ravi, J. Keshavayya, V. Kumar, S. Kandgal, J. Mol. Struct.Struct. 1204, 127493 (2020). https://doi.org/10.1016/j.molstruc.2019.127493

    Article  CAS  Google Scholar 

  13. O. Nagaraja, Y.D. Bodke, I. Pushpavathi, S.R. Kumar, Heliyon 6(6), 04245 (2020). https://doi.org/10.1016/j.heliyon.2020.e04245

    Article  Google Scholar 

  14. B. Manjunatha, Y.D. Bodke, O. Nagaraja, G. Nagaraju, M. Sridhar, J. Mol. Struct.Struct. 1246, 131170 (2021). https://doi.org/10.1016/j.molstruc.2021.131170

    Article  CAS  Google Scholar 

  15. Y. Mi, J. Zhang, X. Han, W. Tan, Q. Miao, J. Cui, Q. Li, Z. Guo, Int. J. Biol. Macromol.Macromol. 181, 572 (2021). https://doi.org/10.1016/j.ijbiomac.2021.03.109

    Article  CAS  Google Scholar 

  16. K. Singh, R. Pal, S.A. Khan, B. Kumar, M.J. Akhtar, J. Mol. Struct.Struct. 1237, 130369 (2021). https://doi.org/10.1016/j.molstruc.2021.130369

    Article  CAS  Google Scholar 

  17. M. Rauf, S. Hisaindee, J. Mol. Struct.Struct. 1042, 45 (2013). https://doi.org/10.1016/j.molstruc.2013.03.050

    Article  CAS  Google Scholar 

  18. H.E. Gaffer, M.E. Mohamed, M.K. Zahran, Life Sci. J. 11(11), 138 (2014)

    CAS  Google Scholar 

  19. S. Sagheer, A. Jabbar, M.K. Pervez, K. Rani, S. Riaz, J. Mol. Struct.Struct. 1250, 131837 (2022). https://doi.org/10.1016/j.molstruc.2021.131837

    Article  CAS  Google Scholar 

  20. A. Jabbar, S. Riaz, F.A. Navaid, M. Choudhary, J. Mol. Struct.Struct. 1195, 161 (2019). https://doi.org/10.1016/j.molstruc.2019.05.019

    Article  CAS  Google Scholar 

  21. S. Riaz, F.A. Navaid, M.I. Choudhary, A. Jabbar, J. Mol. Liq. 287, 110917 (2019). https://doi.org/10.1016/j.molliq.2019.110917

    Article  CAS  Google Scholar 

  22. S. Riaz, A. Jabbar, S. Khaskheli, S. Sagheer, M.I. Choudhary, J. Mol. Struct.Struct. 1272, 134219 (2023). https://doi.org/10.1016/j.molstruc.2022.134219

    Article  CAS  Google Scholar 

  23. K.A. Amin, H.A. Hameid II., A. Abd Elsttar, Food Chem. Toxicol.Toxicol. 48(10), 2994 (2010). https://doi.org/10.1016/j.fct.2010.07.039

    Article  CAS  Google Scholar 

  24. A. Ovung, J. Biophys. Rev. 13(2), 259 (2021). https://doi.org/10.1007/s12551-021-00795-9

    Article  CAS  Google Scholar 

  25. A. Tačić, V. Nikolić, L. Nikolić, I. Savić, Adv. Technol. 6(1), 58 (2017). https://doi.org/10.5937/savteh1701058T

    Article  Google Scholar 

  26. D.R. Patel, K.C. Patel, Dyes Pigm.Pigm. 90(1), 1 (2011). https://doi.org/10.1016/j.dyepig.2010.10.013

    Article  CAS  Google Scholar 

  27. L. Tolosa, M.T. Donato, M.J. Gómez-Lechón, Volume 1250: Protocols in In Vitro Hepatocyte Research (Springer, Berlin, 2015)

    Google Scholar 

  28. M. Mannerström, T. Toimela, J.R. Sarkanen, T. Heinonen, Basic Clin. Pharmacol. Toxicol.Clin. Pharmacol. Toxicol. 121, 109 (2017). https://doi.org/10.1111/bcpt.12790

    Article  CAS  Google Scholar 

  29. P. Price, T.J. McMillan, Cancer Res. 50(5), 1392 (1990)

    CAS  PubMed  Google Scholar 

  30. N. Sultanova, T. Makhmoor, Z. Abilov, Z. Parween, V. Omurkamzinova, M.I. Choudhary, J. Ethnopharmacol.Ethnopharmacol. 78, 201 (2001). https://doi.org/10.1016/S0378-8741(01)00354-3

    Article  CAS  Google Scholar 

  31. R. Naz, A. Bano, Asian Pac. J. Trop. Biomed. 2(12), 944 (2012). https://doi.org/10.1016/S2221-1691(13)60004-0

    Article  CAS  Google Scholar 

  32. Z. Mohammadkhodaei, J. Mokhtari, M. Nouri, Color. Technol. 126(2), 81 (2010). https://doi.org/10.1111/j.1478-4408.2010.00230.x

    Article  CAS  Google Scholar 

  33. H.F. Huang, W. Ma, B.T. Tang, S.F. Zhang, Chin. Chem. Lett. 21(4), 417 (2010). https://doi.org/10.1016/j.cclet.2009.11.010

    Article  CAS  Google Scholar 

  34. H. Günther, N.M.R. Spectroscopy, Basic Principles (Concepts and Applications in Chemistry, John Wiley and Sons, London, 2013)

    Google Scholar 

  35. T. Sutradhar, A. Misra, J. Phys. Chem. A 122(16), 4111 (2018). https://doi.org/10.1021/acs.jpca.8b00261

    Article  CAS  PubMed  Google Scholar 

  36. L. Antonov, S. Stoyanov, Dyes Pigm.Pigm. 28(1), 31 (1995). https://doi.org/10.1016/0143-7208(94)00076-E

    Article  CAS  Google Scholar 

  37. C.E. de Melo, M. Dominguez, M.C. Rezende, V.G. Machado, Dyes Pigm.Pigm. 184, 108757 (2021). https://doi.org/10.1016/j.dyepig.2020.108757

    Article  CAS  Google Scholar 

  38. M. Yazdanbakhsh, M. Giahi, A. Mohammadi, J. Mol. Liq. 144(3), 145 (2009). https://doi.org/10.1016/j.molliq.2008.10.013

    Article  CAS  Google Scholar 

  39. A. Mohammadi, M.R. Yazdanbakhsh, L. Farahnak, Spectrochim Acta, Part A. 89, 238 (2012). https://doi.org/10.1016/j.saa.2011.12.062

    Article  CAS  Google Scholar 

  40. T. Stoyanova, S. Stoyanov, L. Antonov, V. Petrova, Dyes Pigm.Pigm. 31(1), 1 (1996). https://doi.org/10.1016/0143-7208(95)00095-X

    Article  CAS  Google Scholar 

  41. D.R. Matazo, R.A. Ando, A.C. Borin, P.S. Santos, J. Phys. Chem. A 112(19), 4437 (2008). https://doi.org/10.1021/jp800217c

    Article  CAS  PubMed  Google Scholar 

  42. D. Debnath, S. Roy, B.-H. Li, C.-H. Lin, T.K. Misra, Spectrochim Spectrochim Acta. Part A. 140, 185 (2015). https://doi.org/10.1016/j.saa.2014.12.027

    Article  CAS  Google Scholar 

  43. F. Walker, The Chemistry and Application of Dyes (Springer, Boston, 1990)

    Google Scholar 

  44. Z. Akhtar, S.I. Ali, N. Abbas, M. Ali, M.Y. Khan, S.A. Hasan, S. Ahmed, S. Manzoor, Z. Lutfi, J. Chem. Soc. Pak. 42(5), 783 (2020). https://doi.org/10.52568/000688

    Article  CAS  Google Scholar 

  45. M. Zaidan, A. Noor Rain, A. Badrul, A. Adlin, A. Norazah, I. Zakiah, Trop. Biomed.. Biomed. 22(2), 165 (2005)

    CAS  Google Scholar 

  46. N. Özbek, H. Katırcıoğlu, N. Karacan, T. Baykal, Bioorg. Med. Chem.. Med. Chem. 15(15), 5105 (2007). https://doi.org/10.1016/j.bmc.2007.05.037

    Article  CAS  Google Scholar 

  47. H.L. Nguyen, T. Bechtold, J. Cleaner Prod. 315, 128195 (2021). https://doi.org/10.1016/j.jclepro.2021.128195

    Article  CAS  Google Scholar 

  48. M. Kazem-Rostami, J. Therm. Anal. Calorim.Calorim. 140, 613 (2020). https://doi.org/10.1007/s10973-019-08884-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to pay our special regards to Lucky Textile Mills Ltd. (Karachi, Pakistan) for light fastness testing.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Sohail Khan Rafiq: Conceptualization, Methodology, Validation, Investigation, Formal analysis, Software, Visualization, writing – original draft, writing – editing. Abdul Jabbar: Conceptualization, Resources, Supervision, Validation, Writing – review and editing. Saira Faisal: Supervision, Validation, Writing – review and editing. Muhammad Salman: Formal analysis, Software.

Corresponding author

Correspondence to Abdul Jabbar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23977 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, M.S.K., Jabbar, A., Faisal, S. et al. New Synthetic Non-toxic Mono-azo Acid Dyes with Prominent Antibacterial Properties for Potential Application on Polyamide Fabrics. Fibers Polym (2024). https://doi.org/10.1007/s12221-024-00610-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12221-024-00610-8

Keywords

Navigation