Log in

Preparation and Application of Black Cumin Seed Oil Emulsion with Enhanced Stability for Antimicrobial Treatment of Cellulosic Fabric

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

With the growing concern for health and wellness, many textile mills are witnessing a surge in demand for antimicrobial and anti-viral treatments on fabric. The black cumin seed (BCS) is blessed with various antioxidants and antimicrobial active agents, and can be used to develop antimicrobial fabric. The current study aims to prepare a stable emulsion with BCS oil to apply on casual knitted fabric to investigate its anti-bacterial properties. The homogenous emulsions were prepared with Tween-80 surfactant and applied to the fabric by exhaust method. Thus, the emulsions were stable at various temperatures. The surface functional groups of treated fabric were characterized with FT-IR spectroscopy and the surface morphology was visualized with SEM images to confirm the modification. The FT-IR spectrum of treated fabric guaranteed successful modification, presenting the major surface functional groups in the treated fabric. The SEM images further confirmed this phenomenon as the treated fabric exhibited cemented layer deposition of BCS emulsions. The anti-bacterial activity of treated fabric against Bacillus subtilis microbes was measured using the Kirbey–Bauer method. The result showed that the treated fabric demonstrated anti-bacterial activity against B. subtilis with an inhibition zone of 8 mm. The resistive activity against the target bacteria was found active even after a single wash. This was proven through the optical density test which indicated that the fabric can be used for healthcare PPF securing their antimicrobial and anti-viral properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be provided upon request.

Abbreviations

BCS:

Black cumin seed

SEM:

Scanning electronic microscopy

O/W:

Oil-in-water

UCC:

Ultrasonic cell crusher

FT-IR:

Fourier transform infrared radiation

OD:

Optical density

PPF:

Personal protective fabric

References

  1. S. Mollick, T. Islam, M.R. Miah, M. Mehedi, H. Riad, T. Chakrabarty, M.T. Hossen, M.T. Islam, Development of antibacterial cotton fabric utilizing microencapsulation technique from dragon fruit peel extract. Fibers Polym. 1, 3 (2023). https://doi.org/10.1007/s12221-023-00353-y

    Article  CAS  Google Scholar 

  2. R.M. Cloud, W. Cao, G. Song, Functional finishes to improve the comfort and protection of apparel, in In Advances in the Dyeing and Finishing of Technical Textiles. (Elsevier, Amsterdam, Netherlands, 2013), pp. 258–279

    Chapter  Google Scholar 

  3. A. Ahmad, A. Husain, M. Mujeeb, S.A. Khan, A.K. Najmi, N.A. Siddique, Z.A. Damanhouri, F. Anwar, A review on therapeutic potential of Nigella Sativa: a miracle herb. Asian Pac. J. Trop. Biomed. 3, 337–352 (2013). https://doi.org/10.1016/S2221-1691(13)60075-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M.A. Khan, Thymoquinone, a constituent of prophetic medicine-black seed, is a miracle therapeutic molecule against multiple diseases. Int. J. Health Sci. (Qassim) 13, 1–2 (2019)

    CAS  PubMed  Google Scholar 

  5. S.J. Mohammed, H.H.H. Amin, S.B. Aziz, A.M. Sha, S. Hassan, J.M. Abdul Aziz, H.S. Rahman, Structural characterization, antimicrobial activity, and in vitro cytotoxicity effect of black seed oil. Evid. based Complement. Altern. Med. (2019). https://doi.org/10.1155/2019/6515671

    Article  Google Scholar 

  6. L. Urbánková, V. Kašpárková, P. Egner, O. Rudolf, E. Korábková, Caseinate-stabilized emulsions of black cumin and tamanu oils: preparation characterization and antibacterial activity. Polym. (Basel) (2019). https://doi.org/10.3390/polym11121951

    Article  Google Scholar 

  7. S. Kentish, T.J. Wooster, M. Ashokkumar, S. Balachandran, R. Mawson, L. Simons, The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 9, 170–175 (2008). https://doi.org/10.1016/J.IFSET.2007.07.005

    Article  CAS  Google Scholar 

  8. A. Chevallier, Encyclopedia of Medicinal Plants (Dorling Kindersley, New York, 1996)

    Google Scholar 

  9. S.A. Ghazanfar, Handbook of Arabian Medicinal Plants (CRC Press, Boca Raton, 1994)

    Book  Google Scholar 

  10. N.K. Sharma, D. Ahirwar, D. Jhade, S. Gupta, Medicinal and phamacological potential of Nigella Sativa: a review. Ethnobot. Leafl. 7, 11 (2009)

    Google Scholar 

  11. H.R. Sharif, S. Abbas, H. Majeed, W. Safdar, M. Shamoon, M.A. Khan, M. Shoaib, H. Raza, J. Haider, Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch. J. Food Sci. Technol. 54, 3358–3365 (2017). https://doi.org/10.1007/s13197-017-2800-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S.J. Carter, Gunn’s Dispensing for Pharmaceutical Students, 12th edn. (CBS publisher and Distributors, New Delhi, 1987). p. 250

    Google Scholar 

  13. M.G. Song, S.H. Jho, J.Y. Kim, J.D. Kim, Rapid evaluation of water-in-oil (w/o) emulsion stability by turbidity ratio measurements. J. Colloid Interface Sci. 230, 213–215 (2000). https://doi.org/10.1006/jcis.2000.7090

    Article  CAS  PubMed  Google Scholar 

  14. F. Goodarzi, S. Zendehboudi, A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Can. J. Chem. Eng. 97, 281–309 (2019). https://doi.org/10.1002/cjce.23336

    Article  CAS  Google Scholar 

  15. G. Chen, D. Tao, An experimental study of stability of oil-water emulsion. Fuel Process. Technol. 86, 499–508 (2005). https://doi.org/10.1016/j.fuproc.2004.03.010

    Article  CAS  Google Scholar 

  16. M. Jaiswal, R. Dudhe, P.K. Sharma, Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5, 123–127 (2015). https://doi.org/10.1007/s13205-014-0214-0

    Article  PubMed  Google Scholar 

  17. B.G. Pollet, J.T.E. Goh, The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks. Electrochim. Acta 128, 292–303 (2014). https://doi.org/10.1016/j.electacta.2013.09.160

    Article  CAS  Google Scholar 

  18. A.A. Ochoa, J.A. Hernández-Becerra, A. Cavazos-Garduño, E.J. Vernon-Carter, H.S. García, Preparation and characterization of curcumin nanoemulsions obtained by thin-film hydration emulsification and ultrasonication methods. Rev. Mex. Ing. Quim. 15, 79–90 (2016)

    CAS  Google Scholar 

  19. C. Prieto, L. Calvo, Performance of the biocompatible surfactant tween 80, for the formation of microemulsions suitable for new pharmaceutical processing. J. Appl. Chem. 2013, 1–10 (2013). https://doi.org/10.1155/2013/930356

    Article  CAS  Google Scholar 

  20. E. Dickinson, C.M. Woskett, Effect of alcohol on adsorption of casein at the oil—water interface. Food Hydrocoll. 2, 187–194 (1988). https://doi.org/10.1016/S0268-005X(88)80017-1

    Article  CAS  Google Scholar 

  21. M.F. Ramadan, K.M.M. Wahdan, Blending of corn oil with black cumin (Nigella Sativa) and coriander (Coriandrum Sativum) seed oils: impact on functionality, stability and radical scavenging activity. Food Chem. 132, 873–879 (2012). https://doi.org/10.1016/j.foodchem.2011.11.054

    Article  CAS  Google Scholar 

  22. M. Kiralan, G. Özkan, A. Bayrak, M.F. Ramadan, Physicochemical properties and stability of black cumin (Nigella Sativa) seed oil as affected by different extraction methods. Ind. Crops Prod. 57, 52–58 (2014). https://doi.org/10.1016/j.indcrop.2014.03.026

    Article  CAS  Google Scholar 

  23. M.F.R. Hassanien, A.M.A. Assiri, A.M. Alzohairy, H.F. Oraby, Health-promoting value and food applications of black cumin essential oil: an overview. J. Food Sci. Technol. 52, 6136–6142 (2015). https://doi.org/10.1007/s13197-015-1785-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M.L. Foo, C.W. Ooi, K.W. Tan, I.M.L. Chew, Preparation of black cumin seed oil pickering nanoemulsion with enhanced stability and antioxidant potential using nanocrystalline cellulose from oil palm empty fruit bunch. Chemosphere 287, 132108 (2022). https://doi.org/10.1016/j.chemosphere.2021.132108

    Article  CAS  PubMed  Google Scholar 

  25. A.C. Ferreira, A. Sullo, S. Winston, I.T. Norton, A.B. Norton-Welch, Influence of ethanol on emulsions stabilized by low molecular weight surfactants. J. Food Sci. 85, 28–35 (2020). https://doi.org/10.1111/1750-3841.14947

    Article  CAS  PubMed  Google Scholar 

  26. E. Dickinson, C.M. Woskett, Effect of alcohol on adsorption of casein at the oil—water interface. Top. Catal. 2, 187–194 (1988). https://doi.org/10.1016/S0268-005X(88)80017-1

    Article  CAS  Google Scholar 

  27. G.P. Espinosa, M.G. Scanlon, Characterization of alcohol-containing dairy emulsions: pseudo-ternary phase diagrams of sodium caseinate solution-oil-ethanol systems. Food Res. Int. 53, 49–55 (2013). https://doi.org/10.1016/j.foodres.2013.03.006

    Article  CAS  Google Scholar 

  28. A.R. Zakinyan, L.M. Kulgina, A.A. Zakinyan, S.D. Turkin, Electrical conductivity of field-structured emulsions. Fluids (2020). https://doi.org/10.3390/fluids5020074

    Article  Google Scholar 

  29. A.S. Peshkovsky, S.L. Peshkovsky, S. Bystryak, Scalable high-power ultrasonic technology for the production of translucent nanoemulsions. Chem. Eng. Process. 69, 77–82 (2013). https://doi.org/10.1016/j.cep.2013.02.010

    Article  CAS  Google Scholar 

  30. S. Mahdi Jafari, Y. He, B. Bhandari, Nano-emulsion production by sonication and microfluidization-a comparison. Int. J. Food Prop. 9, 475–485 (2006). https://doi.org/10.1080/10942910600596464

    Article  CAS  Google Scholar 

  31. M.K. Poindexter, S. Chuai, R.A. Marble, S.C. Marsh, Solid content dominates emulsion stability predictions. Energy Fuels 19, 1346–1352 (2005). https://doi.org/10.1021/ef049797w

    Article  CAS  Google Scholar 

  32. Y.T. Koh, S.A. Higgins, J.S. Weber, W.M. Kast, Immunological consequences of using three different clinical/laboratory techniques of emulsifying peptide-based vaccines in incomplete freund’s adjuvant. J. Transl. Med. 4, 42 (2006). https://doi.org/10.1186/1479-5876-4-42

    Article  PubMed  PubMed Central  Google Scholar 

  33. S. Zaman Smrity, Stability analysis of formulated emulsion containing black cumin (Nigella Sativa) oil. Am. J. Biomed. Life Sci. 4, 49 (2016). https://doi.org/10.11648/j.ajbls.20160403.15

    Article  CAS  Google Scholar 

  34. T. Islam, A.M. Khan, Md.R. Karim, S. Hossain, M.A. Jalil, Assessing the dyeing efficacy and environmental impact of cotton fabric dyed with sawmill bio-waste extracts and metal salts. SPE Polym. (2024). https://doi.org/10.1002/pls2.10136

    Article  Google Scholar 

  35. A.B. pathol, A.J. clin, Undefined antibiotic susceptibility testing by a standardized single disc method. (1966), ci.nii.ac.jp

  36. M. Kiralan, Changes in volatile compounds of black cumin (Nigella Sativa L) seed oil during thermal oxidation. Int. J. Food Prop. 17, 1482–1489 (2014). https://doi.org/10.1080/10942912.2012.723231

    Article  CAS  Google Scholar 

  37. B. Latreille, P. Paquin, Evaluation of emulsion stability by centrifugation with conductivity measurements. J. Food Sci. 55, 1666–1668 (1990). https://doi.org/10.1111/j.1365-2621.1990.tb03595.x

    Article  Google Scholar 

  38. M.K. Poindexter, R.A. Marble, S.C. Marsh, The key to predicting emulsion stability: solid content, 2006

  39. Q. Xu, M. Nakajima, H. Nabetani, S. Iwamoto, X. Liu, The effects of ethanol content and emulsifying agent concentration on the stability of vegetable oil-ethanol emulsions. J.Am. Oil Chem. Soc. 78, 12 (2001)

    Article  Google Scholar 

  40. S.J. Mohammed, H.H.H. Amin, S.B. Aziz, A.M. Sha, S. Hassan, J.M. Abdul Aziz, H.S. Rahman, Structural characterization, antimicrobial activity, and in vitro cytotoxicity effect of black seed oil. Evid. Based Complement. Altern. Med. 2019, 1–9 (2019). https://doi.org/10.1155/2019/6515671

    Article  Google Scholar 

  41. B. Alizadeh Behbahani, M. Noshad, F. Falah, Cumin essential oil: phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microb. Pathog. 136, 103716 (2019). https://doi.org/10.1016/J.MICPATH.2019.103716

    Article  CAS  PubMed  Google Scholar 

  42. H. Al-Karagoly, A. Rhyaf, H. Naji, S. Albukhaty, F.A. AlMalki, A.A. Alyamani, J. Albaqami, S. Aloufi, Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles using Nigella Sativa seed extract. Green Process. Synth. 11, 254–265 (2022). https://doi.org/10.1515/gps-2022-0026

    Article  CAS  Google Scholar 

  43. M. Makarem, C.M. Lee, K. Kafle, S. Huang, I. Chae, H. Yang, J.D. Kubicki, S.H. Kim, Probing cellulose structures with vibrational spectroscopy. Cellulose 26, 35–79 (2019). https://doi.org/10.1007/s10570-018-2199-z

    Article  CAS  Google Scholar 

  44. M.M. Bashar, H. Zhu, S. Yamamoto, M. Mitsuishi, Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation. Cellulose 26, 3671–3684 (2019). https://doi.org/10.1007/s10570-019-02363-7

    Article  CAS  Google Scholar 

  45. M.M. Bashar, H. Zhu, S. Yamamoto, M. Mitsuishi, Superhydrophobic surfaces with fluorinated cellulose nanofiber assemblies for oil-water separation. RSC Adv. 7, 37168–37174 (2017). https://doi.org/10.1039/C7RA06316D

    Article  CAS  Google Scholar 

  46. G. Akhlamadi, E.K. Goharshadi, Sustainable and superhydrophobic cellulose nanocrystal-based aerogel derived from waste tissue paper as a sorbent for efficient oil/water separation. Process. Saf. Environ. Prot. 154, 155–167 (2021). https://doi.org/10.1016/J.PSEP.2021.08.009

    Article  CAS  Google Scholar 

  47. M. Akram Khan, M. Afzal, Chemical composition of Nigella Sativa Linn: part 2 recent advances. Inflammopharmacology 24, 67–79 (2016). https://doi.org/10.1007/s10787-016-0262-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D.J. McClements, Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 47, 611–649 (2007)

    Article  CAS  PubMed  Google Scholar 

  49. S. Galié, C. García-Gutiérrez, E.M. Miguélez, C.J. Villar, F. Lombó, Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 9, 1–18 (2018). https://doi.org/10.3389/fmicb.2018.00898

    Article  Google Scholar 

  50. H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice, S. Kjelleberg, Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016). https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support from the University Grants Commission of Bangladesh (UGC) through the Research Cell of Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh. They also thank Professor Dr. Joykrisna Saha, from the Department of Textile Engineering at Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh, for his kind support in investigating the antimicrobial activity of the treated fabric. Additionally, the authors acknowledge the Nonwoven Material Research Lab in the Department of Textiles, Merchandising, and Interiors at the University of Georgia, Athens, Georgia 30602, United States, for providing technical support.

Funding

This research was funded by the University Grants Commission, Bangladesh, through the Research Cell of Mawlana Bhashani Science and Technology University for the fiscal year 2023–2024. The specific research grant number is 20232024/30.

Author information

Authors and Affiliations

Authors

Contributions

M.I.M.: Resources, Methodology, Validation, Investigation, Writing—original draft, Writing—review and editing; A.D.P, MMH, MSI: Resources, Investigation, Methodology, Writing—original draft; T.I.: Resources, Investigation, Methodology, Validation, Writing—review and editing; F.T.Z.: Resources, Supervision, Investigation, Methodology, Writing—review and editing; M.I.H., G.B.: Formal analysis, Visualization, Writing—review and editing; M.M.B.: Conceptualization, Supervision, Investigation, Formal analysis, Visualization, Writing—review and editing.

Corresponding authors

Correspondence to Tarikul Islam, Md.Imranul Islam or M. Mahbubul Bashar.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosen, M.I., Pranta, A.D., Hasan, M.M. et al. Preparation and Application of Black Cumin Seed Oil Emulsion with Enhanced Stability for Antimicrobial Treatment of Cellulosic Fabric. Fibers Polym (2024). https://doi.org/10.1007/s12221-024-00601-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12221-024-00601-9

Keywords

Navigation