Log in

An In Vitro Analysis of Antibacterial Property of Mikania micrantha Leaves Extract as a Textile Finish with Crosslinking Agent and Its Washing Efficacy

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Safe, durable and environmentally friendly antimicrobial textiles are in great demand in the market nowadays. The present investigation aims to assess antibacterial properties of Mikania micrantha leaf extract as a sustainable textile finish. The methodology utilized solvent extraction using pure methanol (100%) and application via pad-dry technique on various fabric types, supplemented with 7% citric acid as a crosslinking agent to enhance durability. The AATCC 90:2011 method was used to determine antibacterial activity of the treated fabrics against Staphylococcus aureus (MTCC 7443). Standard techniques were used to characterize the pre- and post-treated textiles, including fabric weight, thickness, crease recovery angle, elongation, stiffness, tensile strength and SEM. The treated fabrics demonstrated a significant (p ≤ 0.05) inhibition zone: Eri/Cotton (21.22 mm) > Eri/Eri (19.00 mm) > Eri/Mulberry (18.67 mm). It was noted that these key physical attributes were not being adversely affected by the finish. Even after ten (10) washes, the fabrics were found to exhibit a significant (p ≤ 0.05) antibacterial activity in the order of Eri/Mulberry (11.22 mm) > Eri/Eri (10.22 mm) > Eri/Cotton (8.00 mm). The findings of the present study indicate that the invasive Mikania micrantha leaves extract has potential as a promising and safer alternative for antimicrobial finishing and its application in textile and medical industries, with a keen focus on mitigating environmental impact.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Data will be made available on request.

References

  1. N.O. Sanli, Eur. J. Bio 67, 115 (2008)

    Google Scholar 

  2. A. Varesano, C. Vineis, A. Aluigi, F. Rombaldoni, Sc. Ag. Mic. Path. Com. Cur. Res. Tech. Adv. 3, 99 (2011)

    Google Scholar 

  3. A.R. Horrocks, S. Anand, Handbook of Technical Textiles (CRC Press, Woodhead Pub, 2000), pp.1–40

    Book  Google Scholar 

  4. W.D. Schindler, P.J. Hauser, Chemical Finishing of Textiles (CRC Press, Boca Raton, 2004), pp.165–172

    Google Scholar 

  5. R.R. Roth, W.D. James, L.T. Col, E.F. Base, W. Alaska, J. Am. Aca. Derm. 20, 367 (1989). https://doi.org/10.1016/S0190-9622(89)70048-7

    Article  CAS  Google Scholar 

  6. E.A. Grice, H.H. Kong, S. Conlan, C.B. Deming, J. Davis, A.C. Young, G.G. Bouffard, R.W. Blakesley, P.R. Murray, E.D. Green, M.L. Turner, S J. A. Segre. Science 1979(324), 1190 (2009). https://doi.org/10.1126/Science.1171700

    Article  Google Scholar 

  7. Z Rajabi, AM Sefidan, M Zarebavani, SS Yazdi, PT Bonab, SZ Mirbagheri, MMS Dallal, (2023) J Food Qual Hazards Control. 10:221, https://doi.org/10.18502/jfqhc.10.4.14180.

  8. H.F. Chambers, F.R. DeLeo, Nat. Rev. Microbiol. 7, 629 (2009). https://doi.org/10.1038/nrmicro2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. Gherardi, Staphylococcus aureus infection: pathogenesis and antimicrobial resistance. Int. J. Mol. Sci. 24(9), 8182 (2023). https://doi.org/10.3390/ijms24098182

    Article  PubMed  PubMed Central  Google Scholar 

  10. E. Heine, H.G. Knops, K. Schaefer, P. Vangeyte, M. Moeller, Mul. Fun. Bar. Flex. Str. 23, 28 (2007). https://doi.org/10.1007/978-3-540-71920-5_2

    Article  Google Scholar 

  11. A. Narayan, A. Banerjee, A. Majumdar, D.B. Datta, J. Inst. Eng. India Ser. E 103, 233 (2022). https://doi.org/10.1007/s40034-022-00237-5

    Article  CAS  Google Scholar 

  12. V.G. Nadiger, S.R. Shukla, Antimicrobial activity of silk treated with aloe-vera. Fibers and Polymers 16, 1012 (2015). https://doi.org/10.1007/s12221-015-1012-y

    Article  CAS  Google Scholar 

  13. G. Deshmukh, Man. Tex. In Ind. 52, 421 (2009)

    Google Scholar 

  14. B. Das, N.V. Padaki, K. Jagannathan, B. Hubballi, S.V. Naik, in Procedia Eng. Elsevier Ltd: Amsterdam 53, 60 (2017). https://doi.org/10.1016/j.proeng.2017.07.009

    Article  Google Scholar 

  15. T. Ramachandran, R. Kumar, R. Rajendran, IE (I) Journal-TX 2, 42 (2004)

    Google Scholar 

  16. Y. Gao, R. Cranston, Text. Res. J. 78, 60 (2008). https://doi.org/10.1177/0040517507082332

    Article  CAS  Google Scholar 

  17. M. Gobalakrishnan, D. Saravanan, S. Das, Sustainable finishing process using natural ingredients. Sustainability in the Textile and Apparel Industries 1, 129–146 (2020). https://doi.org/10.1007/978-3-030-38545-3_5

    Article  Google Scholar 

  18. S. Sfameni, M. Hadhri, G. Rando, D. Drommi, G. Rosace, V. Trovato, M.R. Plutino, Inorganic finishing for textile fabrics: recent advances in wear-resistant, UV protection and antimicrobial treatments. Inorganics. 11(1), 19 (2023). https://doi.org/10.3390/inorganics11010019

    Article  CAS  Google Scholar 

  19. T. Arai, G. Freddi, G.M. Colonna, E. Scotti, A. Boschi, R. Murakami, M. Tsukada, J App Poly 80, 297 (2001). https://doi.org/10.1002/1097-4628(20010411)80

    Article  CAS  Google Scholar 

  20. G. Thilagavathi, T. Kannaian, Ind. J. Nat Pro. & Res. 1, 348 (2010)

    Google Scholar 

  21. S.S. Abkenar, R.M.A. Malek, Fibers and Polymers 25, 83 (2024). https://doi.org/10.1007/s12221-023-00403-5

    Article  CAS  Google Scholar 

  22. A.K. Samanta, P. Agarwal, Ind. J. Fib. & Tex. Res. 34, 384 (2009)

    CAS  Google Scholar 

  23. A. El-Shafei, S. Sharaf, S. Zaghloul, M. Hashem, Int. J. Pharm Tech Res 8, 123 (2015)

    CAS  Google Scholar 

  24. M.P. Sathianarayanan, N.V. Bhat, S. Kokate, V.E. Walunj, Ind. J. Tex. Res. 35, 50 (2010)

    CAS  Google Scholar 

  25. M Borkataky B Kakoti L Saikia 2013 Int. J. Phar. Sc. Rev. & Res. 23 116

  26. M. Naebe, A.N.M.A. Haque, A. Haji, Engineering 12, 145 (2022). https://doi.org/10.1016/j.eng.2021.01.011

    Article  Google Scholar 

  27. M. Orhan, D. Kut, C. Gunesoglu, J. Appl. Polym. Sci. 111, 1344 (2009). https://doi.org/10.1002/app.25083

    Article  CAS  Google Scholar 

  28. M.M. Hassan, I.J. Fowler, Int. J. Biol. Macromol. 205, 55 (2022). https://doi.org/10.1016/j.ijbiomac.2022.02.017

    Article  CAS  PubMed  Google Scholar 

  29. H.M.C. Azeredo, K.W. Waldron, Trends Food Sci. Technol. 52, 109 (2016). https://doi.org/10.1016/j.tifs.2016.04.008

    Article  CAS  Google Scholar 

  30. H. Dinesh, J. Wang, Kim, Glo. Cha. 6, 2200090 (2020). https://doi.org/10.1002/gch2.202200090

    Article  Google Scholar 

  31. R. Jantas, K. Gorna, Fib and tex. In Easte. Euro 14, 88 (2006)

    CAS  Google Scholar 

  32. D.T. Seshadri, N.V. Bhat, Sen’i Gakkaishi 61, 4 (2005)

    Article  Google Scholar 

  33. L Gunasekera 2009 Invasive Plants: A Guide to the Identification of the Most Invasive Plants of Sri Lanka

  34. Y. Li, J. Li, Y. Li, X. Wang, A.-C. Cao, Antimicrobial constituents of the leaves of Mikania micrantha H. B. K. PLoS ONE 8, 2 (2018). https://doi.org/10.1371/journal.pone.0076725

    Article  CAS  Google Scholar 

  35. L.Y. Zhang, W.H. Ye, H.L. Cao, H.L. Feng, Mikania Micrantha H. B. K. in China-an Overview 44, 42 (2004). https://doi.org/10.1111/j.1365-3180.2003.00371.x

    Article  Google Scholar 

  36. A. Dey and J. N. De, Afr. J. Tradit. Complement. Altern. Med. 9 (2012). https://doi.org/10.4314/ajtcam.v9i1.20

  37. W. Herz, A. Srińivasan, P.S. Kalyanaraman, Phytochem. 14, 233 (1975). https://doi.org/10.1016/0031-9422(75)85045-X

    Article  CAS  Google Scholar 

  38. G. Nicollier, A.C. Thompson, Phytochem. 20, 2587 (1981). https://doi.org/10.1016/0031-9422(81)83102-0

    Article  CAS  Google Scholar 

  39. R. Boeker, J. Jakupovic, F. Bohlmann, G. Schmeda-Hirschmann, Planta Med. 53, 105 (1987). https://doi.org/10.1055/s-2006-962638

    Article  CAS  PubMed  Google Scholar 

  40. M.D.R. Cuenca, A. Bardon, C.A.N. Catalan, W.C.M.C. Kokke, J. Nat. Prod. 51, 625 (1988). https://doi.org/10.1021/np50057a040

    Article  CAS  PubMed  Google Scholar 

  41. H. Huang, W. Ye, P. Wu, L. Lin, X. Wei, J. Nat. Prod. 67, 734 (2004). https://doi.org/10.1021/np034027i

    Article  CAS  PubMed  Google Scholar 

  42. Q. Xu, H. **e, H. **ao, L. Lin, X. Wei, Phytochem. Lett. 6, 425 (2013). https://doi.org/10.1016/j.phytol.2013.05.007

    Article  CAS  Google Scholar 

  43. P.-H. But, Z.-D. He, S.-C. Ma, Y.-M. Chan, P.-C. Shaw, W.-C. Ye, R.-W. Jiang, J. Nat. Prod. 72, 925 (2009). https://doi.org/10.1021/np800542t

    Article  CAS  PubMed  Google Scholar 

  44. L. Yan, S. Bin, L. Jun, L. Yuan, W. **a, C. Ao-Cheng, Afr J Microbiol Res 7, 2409 (2013). https://doi.org/10.5897/AJMR2013.5451

    Article  Google Scholar 

  45. H. Abdelbagi, M. Ahmed, Appl. Chem. 45, 7840 (2012)

    Google Scholar 

  46. J. Parekh, D. Jadeja, S. Chanda, Tur. J. Biol. 29, 203 (2005)

    Google Scholar 

  47. V.B. Jayswal, V.H. Patel, N.R. Dave, Appl Biol Res 23, 129 (2021). https://doi.org/10.5958/0974-4517.2021.00018.5

    Article  Google Scholar 

  48. AATCC Test Method 90–2011, Antibacterial Activity Assessment of Textile Materials: Agar Plate Method (Research Triangle Park, NC, 2012), pp. 124–125.

  49. Textiles-Domestic washing and drying procedures for textile testing, ISO 6330E, 1–8 (1984)

    Google Scholar 

  50. C.J. Jahagirdar, L.B. Tiwari, Pramana 62, 1099 (2004). https://doi.org/10.1007/BF02705256

    Article  CAS  Google Scholar 

  51. J.E. Booth, Fabric Dimensions and Properties: Principles of Textiles Testing (CBS Publishers and Distributors, New Delhi, 1996), pp.432–449

    Google Scholar 

  52. Anonymous, Wrinkle Recovery of Woven Fabrics: Recovery Angle, AATCC Test Method 66–2008 (Research Triangle Park, American Association of Textile Chemists and Colorists, 2010), pp.91–94

    Google Scholar 

  53. Anonymous 2008 Method for Breaking Force and Elongation of Textile Fabrics (Strip Method), ASTM D 5035–06

  54. PV Mehta SK Bhardwaj (1988) Managing Quality in the Apparel Industtry New Age International (P) Ltd., Publishers

  55. V.G. Nadiger, S.R. Shukla, Int. J. fib and Tex. Res. 42, 465 (2017)

    CAS  Google Scholar 

  56. U.K. Dev, M.T. Hossain, M.Z. Islam, A.T. Hossain, Wor. J. of Phar. Res. 5, 121 (2015)

    Google Scholar 

  57. C.J. Lim, M. Arumugam, C.K. Lim, G.C.L. Ee, Journal of Natural Fibers 17, 726 (2020). https://doi.org/10.1080/15440478.2018.1527742

    Article  CAS  Google Scholar 

  58. N. Hassan, R. Halis, N.M. Esa, Int. J. of Agri. 10, 209 (2020)

    Google Scholar 

  59. E Sjostrom 1993 Wood Chemistry: Fundamentals and Applications Academic press INC: Cambridge 180 181 https://doi.org/10.1016/B978-0-08-092589-9.50003-6

  60. J. Dai, R.J. Mumper, Molecules 15, 7313 (2010). https://doi.org/10.3390/molecules15107313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. I.B. Sumantri, H.S. Wahyuni, L.F. Mustanti, Pharmacognosy Journal 12, 1395 (2020). https://doi.org/10.5530/pj.2020.12.193

    Article  CAS  Google Scholar 

  62. M.M.G. Fouda, H.M. Fahmy, Carbohydr. Polym. 86, 625 (2011). https://doi.org/10.1016/j.carbpol.2011.04.086

    Article  CAS  Google Scholar 

  63. A.M. El-Shafei, M.M.G. Fouda, D. Knittel, E. Schollmeyer, J. Appl. Polym. Sci. 110, 1289 (2008). https://doi.org/10.1002/app.28352

    Article  CAS  Google Scholar 

  64. M. Salimi, V. Pirouzfar, E. Kianfar, Colloid Polym. Sci. 295, 215 (2017). https://doi.org/10.1007/s00396-016-3998-0

    Article  CAS  Google Scholar 

  65. P. Djarot, N.F. Utami, N. Veonicha, A. Rahmadini, A.N. Iman, Systematic Reviews in Pharmacy 11, 322 (2020)

    CAS  Google Scholar 

  66. K.M. Craft, J.M. Nguyen, L.J. Berg, S.D. Townsend, Med. chem. comm 10, 1231 (2019). https://doi.org/10.1039/C9MD00044E

    Article  CAS  Google Scholar 

  67. W.Y. Wang, J.C. Chiou, J. Yip, K.F. Yung, C.W. Kan, Coatings 10, 520 (2020). https://doi.org/10.3390/coatings10060520

    Article  CAS  Google Scholar 

  68. S. Perera, B. Bhushan, R. Bandara, G. Rajapakse, S. Rajapakse, C. Bandara, Colloids Surf A Physicochem Eng Asp 436, 975 (2013). https://doi.org/10.1016/j.colsurfa.2013.08.038

    Article  CAS  Google Scholar 

  69. M.E. El-Naggar, S. Shaarawy, A. El Shafie, A. Hebeish, Fibers and Polymers 18, 1486 (2017)

    Article  CAS  Google Scholar 

  70. G. Thilagavthi, T. Kannaian, Natural Product Radiance 7, 330 (2008)

    Google Scholar 

  71. M. Montazer, F. Alimohammadi, A. Shamei, M.K. Rahimi, Colloids Surf. B Biointerfaces 89, 196 (2012). https://doi.org/10.1016/j.colsurfb.2011.09.015

    Article  CAS  PubMed  Google Scholar 

  72. A. Sahu, A. Devkota, Int. J. Eco. 23, 1 (2016). https://doi.org/10.3126/eco.v23i0.20646

    Article  Google Scholar 

  73. M.Y. Nasution, M. Restuati, R.A. Syahputra, A. Shafwan, S. Pulungan, J. Bio. Sc. Res. 16, 793 (2019)

    Google Scholar 

  74. M. Miklasińska-Majdanik, M. Kępa, R.D. Wojtyczka, D. Idzik, T.J. Wąsik, Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int. J. Environ. Res. Public Health 15(10), 2321 (2018). https://doi.org/10.3390/ijerph15102321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. A.G. González, L. Moujir, I.L. Bazzocchi, M.D. Correa, M.P. Gupta, Phytomedicine 1, 149 (1994). https://doi.org/10.1016/S0944-7113(11)80034-6

    Article  PubMed  Google Scholar 

  76. J. U. Ewansiha,S. A. Garba, J. D. Mawak, O. A. Oyewole, Front. Sci. 2, 214 (2012).https://doi.org/10.5923/j.fs.20120206.14

  77. S.Y. Pan, S.F. Zhou, S.H. Gao, Z.L. Yu, S.F. Zhang, M.K. Tang, J.N. Sun, D.L. Ma, Y.F. Han, W.F. Fong, K.M. Ko, Evi. Bas. Com. Alt. Med. 2013, 1 (2013). https://doi.org/10.1155/2013/627375

    Article  Google Scholar 

  78. D.P. Pavarini, S.P. Pavarini, M. Niehues, N.P. Lopes, Anim. Feed Sci. Technol. 176, 5 (2012). https://doi.org/10.1016/j.anifeedsci.2012.07.002

    Article  CAS  Google Scholar 

  79. B.P. Saville, Physical Testing of Textiles (Woodhead Publishing Limited, Cambridge, 2012), pp.1–5

    Google Scholar 

  80. S. Kawabata, M. Niwa, J. Text. Inst. 80, 19 (1989). https://doi.org/10.1080/00405008908659184

    Article  Google Scholar 

  81. A Das 2013 Process Control in Textile Manufacturing 41 https://doi.org/10.1533/9780857095633.1.41

  82. R Kavitha 2013 Evaluation of selected herbal antimicrobial finish for development of sustainable bamboo: cotton bandage Doc. Thes. Van. Vid., Ind. Shodh 35 1

  83. N Gokarneshan 2019 J. of Nur. and Pat. Hea. Care 1 1 https://doi.org/10.1016/B978-0-08-102192-7.00019-9

  84. G. Taga, B. Kalita, Journal of Academia and Industrial Research 2, 252 (2013)

    Google Scholar 

  85. S. Saikia, M. Saikia, The Pharma Innovation 11, 732 (2022). http://www.thepharmajournal.com

  86. SV Lomov AV Truevtzev C Cassidy 2000 Tex. Res. J. 70 1088 https://doi.org/10.1177/004051750007001208.

  87. M.M. Sheam, Z. Haque, Z. Nain, 3, 92 (2020). Biotechnol Exp Ther 3, 92 (2020). https://doi.org/10.5455/jabet.2020.d112

    Article  Google Scholar 

  88. I. Jahan, Adv. Res. in Text. Engg. 2, 1018 (2017)

    Google Scholar 

  89. K.L. Pickering, M.G.A. Efendy, T.M. Le, Compos. Part A Appl. Sci. Manuf. 83, 98 (2016). https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  90. R. Rajkhowa, V.B. Gupta, V.K. Kothari, J. of app. Pol. Sc. 77, 2418 (2000). https://doi.org/10.1002/1097-4628(20000912)77:11%3c2418

    Article  CAS  Google Scholar 

  91. G. Melesse, D. Atalie, A. Koyrita, Adv. Mater. Sci. Eng. 2020, 1 (2020). https://doi.org/10.1155/2020/9750393

    Article  CAS  Google Scholar 

  92. K. Wakatsuki, S. Onoda, M. Matsubara, N. Watanabe, L. Bao, H. Morikawa, Polymers (Basel) 14, 3948 (2022). https://doi.org/10.3390/polym1419394

    Article  CAS  PubMed  Google Scholar 

  93. N. Pan, Analysis of woven fabric strengths: prediction of fabric strength under uniaxial and biaxial extensions 56, 311 (1996). https://doi.org/10.1016/0266-3538(95)00114-X

    Article  Google Scholar 

  94. I. Jasińska, Sci. Rep. 13, 12214 (2023). https://doi.org/10.1038/s41598-023-38969-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. V. H. Patel (Professor and Head) and Dr. Viraj Roghelia (Associate Professor), Post Graduate Department of Home Science, Vallabh Vidyanagar, Anand, Gujarat, India for extending their valuable guidance during the study.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Rupjyoti Neog: investigation, formal analysis, methodology, and writing—original draft. Namrita Kola: conceptualization, supervision, writing—review and editing the paper.

Corresponding author

Correspondence to Rupjyoti Neog.

Ethics declarations

Conflict of Interest

The authors have declared no conflicts of interest for this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neog, R., Kola, N. An In Vitro Analysis of Antibacterial Property of Mikania micrantha Leaves Extract as a Textile Finish with Crosslinking Agent and Its Washing Efficacy. Fibers Polym 25, 2569–2583 (2024). https://doi.org/10.1007/s12221-024-00593-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00593-6

Keywords

Navigation