Log in

Gold Nanoparticles-Incorporated Electrospun Nanofibrous Membrane for Optical Biosensing Applications: An Experimental and Computational Approach

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Paper-based biosensing platforms are the leading area of research today. In this work, a platform for biosensing applications with improved detection capability has been prepared using gold nanoparticles (AuNPs) incorporated in electrospun nanofibers. The computational study results demonstrated that the addition of AuNPs brings about better stability to the polymer complex, and the energy band gap was found to be lowered for the PVA-AuNPs (Eg = 3.57 eV) compared to PVA (Eg = 8.82 eV). Based on this data, AuNPs were incorporated into the polymer matrix by immersion and dispersion techniques. Different ratios of polyvinyl alcohol (PVA) to AuNPs have been prepared, and the optical, thermal, morphological, and structural properties of the substrates were evaluated to prepare a matrix with better biosensing capabilities. Improved photoluminescence emission intensity of the order of 2.5 times higher was observed for PVA-AuNPs (7:3) nanofibers compared to bare PVA nanofibers. The improved photoluminescence emission intensity of the polymer matrix can be used as a quantitative parameter for the diagnosis of several diseases. The field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) analysis shows the successful encapsulation of AuNPs within the nanofibers with an average fiber diameter of 101 ± 21 nm and particle size of around 4.24 nm of Au NPs. The prepared PVA-AuNPs nanofibers showed stable luminescence properties (less than 10% variation) even after two months of storage at room temperature. The bioconjugation studies showed better photoluminescence emission intensity for the proposed substrate than the conventional nitrocellulose (NC) membrane. The functional performance of the modified NC membrane with electrospun nanofibers showed a three times higher response than the bare NC membrane. The present study may give new insight to use the gold-incorporated nanofibers as an additive element to the conventional NC membrane in order to bring out better bioconjugation competency with improved sensing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an on-going study.

References

  1. T. Dikid, S.K. Jain, A. Sharma, A. Kumar, J.P. Narain, Emerging & re-emerging infections in India: an overview. Indian J. Med. Res. 138, 19–31 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. R.S. Mani, V. Ravi, A. Desai, S.N. Madhusudana, Emerging viral infections in India. Proc. Natl Acad. Sci. India Sect. B Biol. Sci. 82, 5–21 (2012). https://doi.org/10.1007/s40011-011-0001-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. N. Sarma, Emerging and re-emerging infectious diseases in South East Asia. Indian J. Dermatol. 62, 451–455 (2017). https://doi.org/10.4103/ijd.IJD_389_17

    Article  PubMed  PubMed Central  Google Scholar 

  4. M. Ciotti, M. Ciccozzi, A. Terrinoni, W.-C. Jiang, C.-B. Wang, S. Bernardini, The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 57, 365–388 (2020). https://doi.org/10.1080/10408363.2020.1783198

    Article  CAS  PubMed  Google Scholar 

  5. S. Li, B.-K. Lee, Formation of locally aligned nanofibers by electrospinning on preplaced dielectric particles. Mater. Res. Express 5, 095031 (2018). https://doi.org/10.1088/2053-1591/aad920

    Article  CAS  Google Scholar 

  6. Y. Li, J. Zhu, P. Zhu, C. Yan, H. Jia, Y. Kiyak, J. Zang, J. He, M. Dirican, X. Zhang, Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium–sulfur batteries. J. Membr. Sci. 552, 31–42 (2018). https://doi.org/10.1016/j.memsci.2018.01.062

    Article  CAS  Google Scholar 

  7. J.T. Jung, J.F. Kim, H.H. Wang, E. Di Nicolo, E. Drioli, Y.M. Lee, Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 514, 250–263 (2016). https://doi.org/10.1016/j.memsci.2016.04.069

    Article  CAS  Google Scholar 

  8. D. Jao, V.Z. Beachley, Continuous dual-track fabrication of polymer micro-/nanofibers based on direct drawing. ACS Macro Lett. 8, 588–595 (2019). https://doi.org/10.1021/acsmacrolett.9b00167

    Article  CAS  PubMed  Google Scholar 

  9. J. Yan, Y. Han, S. **a, X. Wang, Y. Zhang, J. Yu, B. Ding, Polymer template synthesis of flexible BaTiO3 crystal nanofibers. Adv. Funct. Mater. 29, 1907919 (2019). https://doi.org/10.1002/adfm.201907919

    Article  CAS  Google Scholar 

  10. W. Zhang, X. Yu, Y. Li, Z. Su, K.D. Jandt, G. Wei, Protein-mimetic peptide nanofibers: motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog. Polym. Sci. 80, 94–124 (2018). https://doi.org/10.1016/j.progpolymsci.2017.12.001

    Article  CAS  Google Scholar 

  11. H.M. Ibrahim, M.M. Reda, A. Klingner, Preparation and characterization of green carboxymethylchitosan (CMCS)—polyvinyl alcohol (PVA) electrospun nanofibers containing gold nanoparticles (AuNPs) and its potential use as biomaterials. Int. J. Biol. Macromol. 151, 821–829 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.174

    Article  CAS  PubMed  Google Scholar 

  12. J.S. Algethami, T. Amna, L.S. Alqarni, A.A. Alshahrani, M.A.M. Alhamami, A.F. Seliem, B.H.A. Al-Dhuwayin, M.S. Hassan, Production of ceramics/metal oxide nanofibers via electrospinning: new insights into the photocatalytic and bactericidal mechanisms. Materials 16, 5148 (2023). https://doi.org/10.3390/ma16145148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. X. Yang, Y. Chen, C. Zhang, G. Duan, S. Jiang, Electrospun carbon nanofibers and their reinforced composites: preparation, modification, applications, and perspectives. Compos. Part B Eng. 249, 110386 (2023). https://doi.org/10.1016/j.compositesb.2022.110386

    Article  CAS  Google Scholar 

  14. S.T. Aruna, L.S. Balaji, S.S. Kumar, B.S. Prakash, Electrospinning in solid oxide fuel cells—a review. Renew. Sustain. Energy Rev. 67, 673–682 (2017). https://doi.org/10.1016/j.rser.2016.09.003

    Article  CAS  Google Scholar 

  15. J. Hu, H. Wei, Q. Wu, X. Zhao, K. Chen, J. Sun, Z. Cui, C. Wang, Preparation and characterization of luminescent polyimide/glass composite fiber. J. Mater. Res. Technol. 18, 4329–4339 (2022). https://doi.org/10.1016/j.jmrt.2022.04.101

    Article  CAS  Google Scholar 

  16. G. El-Fawal, Polymer nanofibers electrospinning: a review. Egypt. J. Chem. (2019). https://doi.org/10.21608/ejchem.2019.14837.1898

    Article  Google Scholar 

  17. Y. Yan, X. Liu, J. Yan, C. Guan, J. Wang, Electrospun nanofibers for new generation flexible energy storage. Energy Environ. Mater. 4, 502–521 (2021). https://doi.org/10.1002/eem2.12146

    Article  CAS  Google Scholar 

  18. M.M. Abdul-Hameed, S.A.P. Mohamed-Khan, B.M. Thamer, N. Rajkumar, H. El-Hamshary, M. El-Newehy, Electrospun nanofibers for drug delivery applications: methods and mechanism. Polym. Adv. Technol. 34, 6–23 (2023). https://doi.org/10.1002/pat.5884

    Article  CAS  Google Scholar 

  19. Y. Bian, C. Zhang, H. Wang, Q. Cao, Degradable nanofiber for eco-friendly air filtration: progress and perspectives. Sep. Purif. Technol. 306, 122642 (2023). https://doi.org/10.1016/j.seppur.2022.122642

    Article  CAS  Google Scholar 

  20. J. Zhou, L. Wang, W. Gong, B. Wang, D.-G. Yu, Y. Zhu, Integrating Chinese herbs and western medicine for new wound dressings through handheld electrospinning. Biomedicines 11, 2146 (2023). https://doi.org/10.3390/biomedicines11082146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. K. Halicka, J. Cabaj, Electrospun nanofibers for sensing and biosensing applications—a review. Int. J. Mol. Sci. 22, 6357 (2021). https://doi.org/10.3390/ijms22126357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. G. Zhang, X. Zhao, J. Hu, Y. Li, H. Ma, Z. Cui, Preparation and adsorption performance of cellulose acetate fiber-chitosan/titanium dioxide surface layers composite membranes prepared based on a sol-gel method. J. Macromol. Sci. Part B 61, 1248–1260 (2022). https://doi.org/10.1080/00222348.2022.2159619

    Article  CAS  Google Scholar 

  23. C. Huang, L. Xu, X. Xu, L. Ma, H. Bao, J. Liao, J. Wang, J. Han, G. Xu, D. Huang, B. Ye, H. Zhang, M. Wu, X. Zhao, H. Ma, Highly amidoxime utilization ratio of porous poly(cyclic imide dioxime) nanofiber for effective uranium extraction from seawater. Chem. Eng. J. 443, 136312 (2022). https://doi.org/10.1016/j.cej.2022.136312

    Article  CAS  Google Scholar 

  24. G. Ren, D. Lu, Y. Zhang, Z. Cui, Z. Li, H. Yu, J. He, Poly(methyl methacrylate) embedded fluorine-free polyurethane electrospun nanofiber membranes with enhanced waterproof and breathable performance. Compos. Commun. 43, 101698 (2023). https://doi.org/10.1016/j.coco.2023.101698

    Article  Google Scholar 

  25. F. Ebrahimi, S.R. Nabavi, A. Omrani, Fabrication of hydrophilic hierarchical PAN/SiO2 nanofibers by electrospray assisted electrospinning for efficient removal of cationic dyes. Environ. Technol. Innov. 25, 102258 (2022). https://doi.org/10.1016/j.eti.2021.102258

    Article  CAS  Google Scholar 

  26. M.N. Uddin, Md. Mohebbullah, S.M. Islam, M.A. Uddin, Md. Jobaer, Nigella/honey/garlic/olive oil co-loaded PVA electrospun nanofibers for potential biomedical applications. Prog. Biomater. 11, 431–446 (2022). https://doi.org/10.1007/s40204-022-00207-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L. Yang, C. Niu, X. Cao, Y. Wang, Z. Zhu, H. Sun, W. Liang, J. Li, A. Li, Mechanically robust conjugated microporous polymer membranes prepared using polyvinylpyrrolidone (PVP) electrospun nanofibers as a template for efficient PM capture. J. Colloid Interface Sci. 637, 305–316 (2023). https://doi.org/10.1016/j.jcis.2023.01.059

    Article  CAS  PubMed  Google Scholar 

  28. O. Mitxelena-Iribarren, M. Riera-Pons, S. Pereira, F.J. Calero-Castro, J.M. Castillo-Tuñón, J. Padillo-Ruiz, M. Mujika, S. Arana, Drug-loaded PCL electrospun nanofibers as anti-pancreatic cancer drug delivery systems. Polym. Bull. 80, 7763–7778 (2023). https://doi.org/10.1007/s00289-022-04425-6

    Article  CAS  Google Scholar 

  29. M.I. Baker, S.P. Walsh, Z. Schwartz, B.D. Boyan, A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 100B, 1451–1457 (2012). https://doi.org/10.1002/jbm.b.32694

    Article  CAS  Google Scholar 

  30. G. Swift, Directions for environmentally biodegradable polymer research. Acc. Chem. Res. 26, 105–110 (1993). https://doi.org/10.1021/ar00027a005

    Article  CAS  Google Scholar 

  31. W.R. Gombotz, D.K. Pettit, Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 6, 332–351 (1995). https://doi.org/10.1021/bc00034a002

    Article  CAS  PubMed  Google Scholar 

  32. S. Ram, T.K. Mandal, Photoluminescence in small isotactic, atactic and syndiotactic PVA polymer molecules in water. Chem. Phys. 303, 121–128 (2004). https://doi.org/10.1016/j.chemphys.2004.05.006

    Article  CAS  Google Scholar 

  33. D. Sharma, B.K. Satapathy, Polymer substrate-based transition metal modified electrospun nanofibrous materials: current trends in functional applications and challenges. Polym. Rev. 62, 439–484 (2022). https://doi.org/10.1080/15583724.2021.1972006

    Article  CAS  Google Scholar 

  34. M. Baghali, W.A.D.M. Jayathilaka, S. Ramakrishna, The role of electrospun nanomaterials in the future of energy and environment. Materials 14, 558 (2021). https://doi.org/10.3390/ma14030558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. G. Wang, D. Yu, A.D. Kelkar, L. Zhang, Electrospun nanofiber: emerging reinforcing filler in polymer matrix composite materials. Prog. Polym. Sci. 75, 73–107 (2017). https://doi.org/10.1016/j.progpolymsci.2017.08.002

    Article  CAS  Google Scholar 

  36. M.A. Teixeira, M.C. Paiva, M.T.P. Amorim, H.P. Felgueiras, Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing. Nanomaterials 10, 557 (2020). https://doi.org/10.3390/nano10030557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. T. Patil, R. Gambhir, A. Vibhute, A.P. Tiwari, Gold nanoparticles: synthesis methods, functionalization and biological applications. J. Clust. Sci. 34, 705–725 (2023). https://doi.org/10.1007/s10876-022-02287-6

    Article  CAS  Google Scholar 

  38. J. Najeeb, U. Farwa, F. Ishaque, H. Munir, A. Rahdar, M.F. Nazar, M.N. Zafar, Surfactant stabilized gold nanomaterials for environmental sensing applications—a review. Environ. Res. 208, 112644 (2022). https://doi.org/10.1016/j.envres.2021.112644

    Article  CAS  PubMed  Google Scholar 

  39. S. Ali, X. Chen, W. Shi, G. Huang, L. Yuan, L. Meng, S. Chen, X. Zhonghao, X. Chen, Recent advances in silver and gold nanoparticles-based colorimetric sensors for heavy metal ions detection: a review. Crit. Rev. Anal. Chem. 53, 718–750 (2023). https://doi.org/10.1080/10408347.2021.1973886

    Article  CAS  PubMed  Google Scholar 

  40. J.P. Oliveira, A.R. Prado, W.J. Keijok, M.R.N. Ribeiro, M.J. Pontes, B.V. Nogueira, M.C.C. Guimarães, A helpful method for controlled synthesis of monodisperse gold nanoparticles through response surface modeling. Arab. J. Chem. 13, 216–226 (2020). https://doi.org/10.1016/j.arabjc.2017.04.003

    Article  CAS  Google Scholar 

  41. D. Quesada-González, C. Stefani, I. González, A. De La Escosura-Muñiz, N. Domingo, P. Mutjé, A. Merkoçi, Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosens. Bioelectron. 141, 111407 (2019). https://doi.org/10.1016/j.bios.2019.111407

    Article  CAS  PubMed  Google Scholar 

  42. M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb, J R Cheeseman, G Scalmani, V Barone, B Mennucci, G A Peterson, H Nakatsuji, M Caricato, X Li, H P Hratchian, A F Izmaylov, J Blonio, G Zheng, J L Sonnenberg, M Hada, M Ehara, K Toyota, R Fukuda, J Hasegawa, M Ishida, T Nakajima, Y Honda, O Kitao, H Nakai, T Vreven, J A Montogomery Jr., J E Peralta, F Ogliaro, M Bearpark, J J Heyd, E Brothers, K N Kudin, V N Staroverov, R Kobayashi, J Normand, K Raghavachari, A Rendell, J C Burant, S S Iyengar, J Tomasi, M Cossi, N Rega, J M Millam, M Klene, J E Knox, J B Cross, V Bakken, C Adamo, J Jaramillo, R R Gomperts, R E Stratmann, O Yazyev, A J Austin, R Cammi, C Pomelli, J W Ochterski, R L Martin, K Morokuma, V G Zakrzewski, G A Voth, P Salvador, J J Dannenberg, S Dapprich, A D Daniels, O Farkas, J B Foresman, J V Ortiz, J Cioslowski, D J Fox, Gaussian ‘16W, Rev. C.01, (2019)

  43. E.D. Glendening, F. Weinhold, Natural resonance theory: II. Natural bond order and valency. Wiley Online Libr. 19, 610–627 (1998)

    CAS  Google Scholar 

  44. P.K. Jain, M.A. El-Sayed, Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 487, 153–164 (2010). https://doi.org/10.1016/j.cplett.2010.01.062

    Article  CAS  Google Scholar 

  45. M.R. Tchalala, D.H. Anjum, S. Chaieb, Effect of ionic liquid (emim BF 4) on the dispersion of gold nanoparticles. J. Phys. Conf. Ser. 758, 012020 (2016). https://doi.org/10.1088/1742-6596/758/1/012020

    Article  CAS  Google Scholar 

  46. J. Zheng, C. Zhou, M. Yu, J. Liu, Different sized luminescent gold nanoparticles. Nanoscale 4, 4073 (2012). https://doi.org/10.1039/c2nr31192e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Pattabi, R.M. Pattabi, Photoluminescence from gold and silver nanoparticles. Nano Hybrids 6, 1–35 (2014). https://doi.org/10.4028/www.scientific.net/NH.6.1

    Article  CAS  Google Scholar 

  48. J.P. Wilcoxon, J.E. Martin, F. Parsapour, B. Wiedenman, D.F. Kelley, Photoluminescence from nanosize gold clusters. J. Chem. Phys. 108, 9137–9143 (1998). https://doi.org/10.1063/1.476360

    Article  CAS  Google Scholar 

  49. C. Fernández-Ponce, J.P. Muñoz-Miranda, D.M. De Los-Santos, E. Aguado, F. García-Cozar, R. Litrán, Influence of size and surface cap** on photoluminescence and cytotoxicity of gold nanoparticles. J. Nanoparticle Res. 20, 305 (2018). https://doi.org/10.1007/s11051-018-4406-0

    Article  CAS  Google Scholar 

  50. H.A. Alluhaybi, S.K. Ghoshal, B.O. Alsobhi, W.N. Wan-Shamsuri, Visible photoluminescence from gold nanoparticles: a basic insight. Optik 192, 162936 (2019). https://doi.org/10.1016/j.ijleo.2019.162936

    Article  CAS  Google Scholar 

  51. W. Wang, X. Ding, Q. Xu, J. Wang, L. Wang, X. Lou, Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein. Colloids Surf. B Biointerfaces 148, 541–548 (2016). https://doi.org/10.1016/j.colsurfb.2016.09.021

    Article  CAS  PubMed  Google Scholar 

  52. T.P. Mthethwa, M.J. Moloto, A. De Vries, K.P. Matabola, Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres. Mater. Res. Bull. 46, 569–575 (2011). https://doi.org/10.1016/j.materresbull.2010.12.022

    Article  CAS  Google Scholar 

  53. N.D. Luong, J. Oh, Y. Lee, J.H. Yeon, J. Hur, J.J. Park, J.M. Kim, J. Nam, Immobilization of gold nanoparticles on poly(methyl methacrylate) electrospun fibers exhibiting solid-state surface plasmon effect. Surf. Interface Anal. 44, 318–321 (2012). https://doi.org/10.1002/sia.3804

    Article  CAS  Google Scholar 

  54. O.A. Ghazy, M.M. Shehata, H.M. Hosni, H.H. Saleh, Z.I. Ali, In situ synthesis of gold nanoparticles within poly (vinyl alcohol) matrix under electron accelerator radiation: photoluminescence, thermal and electrical properties. Opt. Quantum Electron. 53, 71 (2021). https://doi.org/10.1007/s11082-020-02727-5

    Article  CAS  Google Scholar 

  55. H. Lu, L. Zou, Y. Xu, H. Sun, Y.V. Li, Preparation and study of poly vinyl alcohol/hyperbranched polylysine fluorescence fibers via wet spinning. Mater. Res. Express 5, 025102 (2018). https://doi.org/10.1088/2053-1591/aaaedc

    Article  CAS  Google Scholar 

  56. S.D. Borse, S.S. Joshi, Optical and structural properties of PVA capped gold nanoparticles and their antibacterial efficacy. Adv. Chem. Lett. 1, 15–23 (2013). https://doi.org/10.1166/acl.2013.1007

    Article  CAS  Google Scholar 

  57. A. Sillen, Y. Engelborghs, The correct use of “average” fluorescence parameters. Photochem. Photobiol. 67, 475–486 (1998). https://doi.org/10.1111/j.1751-1097.1998.tb09082.x

    Article  CAS  Google Scholar 

  58. B. Smith, Infrared spectral interpretation a systematic approach (CRC Press LLC, Florida, 2000)

    Google Scholar 

  59. I. Jipa, A. Stoica, M. Stroescu, L.-M. Dobre, T. Dobre, S. **ga, C. Tardei, Potassium sorbate release from poly(vinyl alcohol)-bacterial cellulose films. Chem. Pap. (2012). https://doi.org/10.2478/s11696-011-0068-4

    Article  Google Scholar 

  60. G. Aruldhas, Molecular structure and spectroscopy, 2nd edn. (PHI Learning Private Limited, 2008)

    Google Scholar 

  61. H. Zhu, M. Du, M. Zhang, P. Wang, S. Bao, M. Zou, Y. Fu, J. Yao, Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of “hot” spots. Biosens. Bioelectron. 54, 91–101 (2014). https://doi.org/10.1016/j.bios.2013.10.047

    Article  CAS  PubMed  Google Scholar 

  62. C. Sun, R. Qu, C. Ji, Y. Meng, C. Wang, Y. Sun, L. Qi, Preparation and property of polyvinyl alcohol-based film embedded with gold nanoparticles. J. Nanoparticle Res. 11, 1005–1010 (2009). https://doi.org/10.1007/s11051-008-9552-3

    Article  CAS  Google Scholar 

  63. L.H. Gaabour, Spectroscopic and thermal analysis of polyacrylamide/chitosan (PAM/CS) blend loaded by gold nanoparticles. Results Phys. 7, 2153–2158 (2017). https://doi.org/10.1016/j.rinp.2017.06.027

    Article  Google Scholar 

  64. E.D. Boland, B.D. Coleman, C.P. Barnes, D.G. Simpson, G.E. Wnek, G.L. Bowlin, Electrospinning polydioxanone for biomedical applications. Acta Biomater. 1, 115–123 (2005). https://doi.org/10.1016/j.actbio.2004.09.003

    Article  PubMed  Google Scholar 

  65. J. Rnjak-Kovacina, S.G. Wise, Z. Li, P.K.M. Maitz, C.J. Young, Y. Wang, A.S. Weiss, Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 32, 6729–6736 (2011). https://doi.org/10.1016/j.biomaterials.2011.05.065

    Article  CAS  PubMed  Google Scholar 

  66. S. H. G. Neubert, Controllability of electrospinning and electrospraying-advances and application, National University of Singapore, (2010). https://core.ac.uk/download/pdf/48636297.pdf

  67. P.K. Khanna, R. Gokhale, V.V.V.S. Subbarao, A.K. Vishwanath, B.K. Das, C.V.V. Satyanarayana, PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent. Mater. Chem. Phys. 92, 229–233 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.016

    Article  CAS  Google Scholar 

  68. M.S.S. Bharathi, C. Byram, D. Banerjee, D. Sarma, B. Barkakaty, V.R. Soma, Gold nanoparticle nanofibres as SERS substrate for detection of methylene blue and a chemical warfare simulant (methyl salicylate). Bull. Mater. Sci. 44, 103 (2021). https://doi.org/10.1007/s12034-021-02402-9

    Article  CAS  Google Scholar 

  69. A.A. Al-Shamari, A.M. Abdelghany, H. Alnattar, A.H. Oraby, Structural and optical properties of PEO/CMC polymer blend modified with gold nanoparticles synthesized by laser ablation in water. J. Mater. Res. Technol. 12, 1597–1605 (2021). https://doi.org/10.1016/j.jmrt.2021.03.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), Government of India, under the CRG scheme (No- CRG/2020/001529). The authors acknowledge HLL Lifecare Limited, Trivandrum, Kerala, India, for providing necessary facilities and support. The authors acknowledge the technical support provided by Ms. Alice Noble A, Research Scholar, Department of Physics, University of Kerala (Computational studies), and Ms. Arya R S, Research Intern, CRDC (Bioconjugation studies). The authors would also like to thank COE-AMGT, Amrita Vishwa Vidyapeetham, Coimbatore for FESEM–EDAX analysis.

Author information

Authors and Affiliations

Authors

Contributions

Ms. Sujitha A S literature survey, performing experiments for the study, manuscript writing—original draft, graph plotting and analysis. R. Saikant: performing experiments for the lateral flow assay kits, part of manuscript writing. Dr. Lakshminarayanan Ragupathy: visualization, formal analysis, review and editing. Dr. Hubert Joe conceptualization, methodology, theoretical studies, formal analysis, review and editing. Dr. Diksha Painuly: conceptualization, methodology, resources, validation, formal analysis, visualization, supervision, project administration, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Diksha Painuly.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this research work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4798 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujitha, A.S., Saikant, R., Ragupathy, L. et al. Gold Nanoparticles-Incorporated Electrospun Nanofibrous Membrane for Optical Biosensing Applications: An Experimental and Computational Approach. Fibers Polym 25, 1193–1210 (2024). https://doi.org/10.1007/s12221-024-00511-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00511-w

Keywords

Navigation