Log in

Control of the Pore Structure of PLA Covering Film and Its Effect on Pesticide Release at Different Temperatures

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The spraying of pesticides not only causes the waste of chemicals but also air pollution. To make the use of pesticides become more environmentally friendly and effective, biodegradable material polylactic acid (PLA) was chosen to package pesticides in this work. Three different film preparation methods (drying, coagulation bath sha**, and steam treatment) were used to study the morphology of PLA coated films. From FESEM images, it could be observed that the steam treatment was more easy in forming pore structures of the films. The sustained release performances of PLA film with the pore size around 800 nm for tetracycline hydrochloride (TC) and hymexazol (HYM) were investigated. The results showed that both chemical temperature and solubility could affect the sustained release effect of films. Due to the slower dissolution rate of TC compared to HYM, it was prone to aggregation in PLA films, which affected the sustained release of TC. The release rates of TC and HYM could reach 98.2% (40 °C, 2.5 h) and 99.51% (60 °C, 3.0 h), respectively. The release processes of TC and HYM conformed to the first-order kinetic model. It promotes the application of environmental friendly materials in pest control of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. R.A. Verdenelli, M.F. Dominchin, F.M. Barbero, Appl. Soil Ecol. 190, 104984 (2023)

    Article  Google Scholar 

  2. Y. Zhu, Y.Y. Qiao, Y.N. Yang, Chin. J. Hosp. Pharm. 38, 2179 (2018)

    CAS  Google Scholar 

  3. Y. Ma, M. Yu, Y. Wang, Chem. Eng. J. 462, 142190 (2023)

    Article  CAS  Google Scholar 

  4. F. Mo, X. Hu, Y. Ding, Ind. Crops Prod. 197, 116553 (2023)

    Article  CAS  Google Scholar 

  5. T. Xu, J.C. Gu, J. Meng, J. Mech. Behav. Biomed. Mater. 132, 105277 (2022)

    Article  CAS  PubMed  Google Scholar 

  6. M.L. Wang, R.L. Ge, F.Y. Zhang, Biomater. Adv. 150, 213404 (2023)

    Article  CAS  PubMed  Google Scholar 

  7. P. Tipduangta, W. Watcharathirawongs, P. Waritdecha, J. Drug Deliv. Sci. Technol. 86, 104732 (2023)

    Article  CAS  Google Scholar 

  8. T. Hou, X.L. Li, Y.S. Lu, Int. J. Biol. Macromol. 242, 125141 (2023)

    Article  CAS  PubMed  Google Scholar 

  9. F.A. De Oliveira, C.C.D.S. Batista, P. Černoch, Biomacromol 24, 2291 (2023)

    Article  Google Scholar 

  10. N. Bostan, N. Ilyas, N. Akhtar, Environ. Res. 234, 116523 (2023)

    Article  CAS  PubMed  Google Scholar 

  11. T.A. Swetha, V. Ananthi, A. Bora, Int. J. Biol. Macromol. 234, 123703 (2023)

    Article  CAS  PubMed  Google Scholar 

  12. J.C. Gu, S. Yagi, J. Meng, J. Membr. Sci. 654, 120571 (2022)

    Article  CAS  Google Scholar 

  13. P. Rivera, C. Villegas, R. Cabezas, J. Supercrit. Fluids 194, 105854 (2023)

    Article  CAS  Google Scholar 

  14. H. Shakeri, M.H. Nazarpak, R. Imani, Int. J. Biol. Macromol. 231, 123201 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C.L. Xu, L.D. Cao, C. Cao, Chem. Eng. J. 452, 139195 (2023)

    Article  CAS  Google Scholar 

  16. M.C. Yang, S.Y.H. Abdalkarim, H.Y. Yu, Carbohydr. Polym. 301, 120350 (2023)

    Article  CAS  PubMed  Google Scholar 

  17. M.R. Yang, H.H. Liu, K.K. Chen, J. Taiwan Inst. Chem. Eng. 147, 104903 (2023)

    Article  CAS  Google Scholar 

  18. X. Y. Zhao, Q. Wu, C. Huang, J. Chem. Technol. Biotechnol. 96, 672 (2020)

  19. J.H. Hu, X.Y. Zhao, G.M. Zhang, J. Taiwan Inst. Chem. Eng. 142, 104630 (2023)

    Article  CAS  Google Scholar 

  20. D. Xu, G.Y. Pan, Y.T. Ge, Membranes 13, 310 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. B. Pilic, T. Radusin, I. Ristic, Hemijska Industrija 70, 73 (2016)

    Article  Google Scholar 

  22. J. Shao, J.R. Sun, X.C. Bian, Macromolecules 46, 6963 (2013)

    Article  ADS  CAS  Google Scholar 

  23. J.L. Liu, W.B. Gong, Y.G. Yao, Compos. Sci. Technol. 164, 290 (2018)

    Article  CAS  Google Scholar 

  24. G. Alper, C. Yavuz, S. Jialong, Biomacromolecules 16, 890 (2015)

  25. M. Yassari, A. Shakeri, Chem. Eng. Res. Des. 184, 137 (2022)

    Article  CAS  Google Scholar 

  26. V. Santás-Miguel, M. Arias-Estévez, M. Díaz-Raviña, Appl. Soil Ecol. 147, 103437 (2020)

    Article  Google Scholar 

  27. E.P.N. Ntone, S.A. Rahman, R.A. Samah, Chem. Eng. Res. Des. 195, 28 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Opening Project of the State Key Laboratory of Materials-Oriented Chemical Engineering (KL21-06) and the Jiangsu Province Key Laboratory of Fine Petrochemical Engineering (KF2202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoyan Zhao.

Ethics declarations

Conflict of Interest

The authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 162 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Zhao, X., Zhu, X. et al. Control of the Pore Structure of PLA Covering Film and Its Effect on Pesticide Release at Different Temperatures. Fibers Polym 25, 785–796 (2024). https://doi.org/10.1007/s12221-024-00477-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00477-9

Keywords

Navigation