Log in

Effect of Polyamide Binder on Mechanical Properties of Carbon Fiber Spread Tow/Epoxy Composite

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The evaluation of polyamide (PA) binder on a carbon fiber spread tow for improving the mechanical properties of carbon-fiber-reinforced epoxy (CF/epoxy) composites is presented herein. PA powder is applied to spread tow to maintain its shape at the end of the tow spreading process. Test specimens are prepared via vacuum-assisted resin transfer molding. A reference sample of a spread-tow-treated epoxy binder is fabricated to confirm the thermoplastic binder treatment effect and its conditions on CF/epoxy composites. The effect of PA binder treatment on the CF/epoxy composites is assessed via mechanical tests, i.e., tensile, flexural, and interlaminar shear strength (ILSS) tests. In addition, the fracture morphology of the composites is observed using FE-SEM to support the mechanical testing results. Experimental results confirm that compared with the epoxy binder (3.5 wt%)-treated spread tow/epoxy composite, the flexural properties and ILSS of the PA binder (3.5 wt%)-treated spread tow/epoxy composite improve significantly owing to the positive effect of the PA binder. In general, the PA-treated CF/epoxy composite can be used to improve the mechanical strength of carbon fiber composites for engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Arteiro, G. Catalanotti, J. Xavier, P. Linde, and P. P. Camanho, Compos. Struct., 179, 208 (2017).

    Article  Google Scholar 

  2. A. Arteiro, C. Furtado, G. Catalanotti, P. Linde, and P. P. Camanho, Compos. Part A, Appl. Sci. Manuf., 132, 105777 (2020).

    Article  CAS  Google Scholar 

  3. J. Galos, Compos. Struct., 236, 111920 (2020).

    Article  Google Scholar 

  4. H. M. El-Dessouky and C. A. Lawrence, Compos. Part B. Eng., 50, 91 (2013).

    Article  CAS  Google Scholar 

  5. D. Kwon, S. Park, I. Kwon, J. Park, and E. Jeong, Carbon Lett., 29, 183 (2019).

    Article  Google Scholar 

  6. J. Chen and C. Chao, Carbon, 43, 2514 (2005).

    Article  Google Scholar 

  7. H. M. El-Dessouky in “Advanced Composite Materials: Properties and Applications”, 1st ed. (H. M. El-Dessouky Ed.), pp.323–348, De Gruyter Open, Poland, 2017.

  8. C. Borg, J. Reinf. Plast. Compos., 59, 194 (2015).

    Article  Google Scholar 

  9. F. Ohlsson, J. Reinf. Plast. Compos., 59, 228 (2015).

    Article  Google Scholar 

  10. M. Arnold, M. Henne, K. Bender, and K. Drechsler, Polym. Compos., 36, 1249 (2015).

    Article  CAS  Google Scholar 

  11. J. Spanoudakis and R. J. Young, J. Mater. Sci., 19, 487 (1984).

    Article  CAS  Google Scholar 

  12. A. C. Moloney, H. H. Kausch, T. Kaiser, and H. R. Beer, J. Mater. Sci., 22, 381 (1987).

    Article  CAS  Google Scholar 

  13. A. J. Kinloch, K. Masania, A. C. Taylor, S. Sprenger, and D. Egan, J. Mater. Sci., 43, 1151 (2008).

    Article  CAS  Google Scholar 

  14. J. F. Timmerman, B. S. Hayes, and J. C. Seferis, Compos. Sci. Technol., 62, 1249 (2002).

    Article  CAS  Google Scholar 

  15. J. Roh, U. Baek, J. Roh, and G. Nam, Compos. Res., 33, 1 (2020).

    Google Scholar 

  16. S. Kang, D. Lee, and N. Choi, Compos. Sci. Technol., 69, 245 (2009).

    Article  CAS  Google Scholar 

  17. M. Gabr and K. Uzawa, Int. J. Sci. Res. Innov. Technol., 11, 82 (2017).

    Google Scholar 

  18. S. Gul, A. Kausar, M. Mehmood, B. Muhammad, and S. Jabeen, Polym. Plast. Technol. Eng., 55, 1842 (2016).

    Article  CAS  Google Scholar 

  19. E. Valot and F. D. C. Gallouédec, Eur. Coat. J., 6, 438 (1998).

    Google Scholar 

  20. Y. Z. Wan, G. C. Chen, S. Raman, J. Y. **n, Q. Y. Li, Y. Huang, Y. L. Wang, and H. L. Luo, Wear, 260, 933 (2006).

    Article  CAS  Google Scholar 

  21. X. Zhang, X. Fan, C. Yan, H. Li, Y. Zhu, X. Li, and L. Yu, ACS Appl. Mater. Interfaces, 4, 1543 (2012).

    Article  CAS  Google Scholar 

  22. N. Dilsiz, E. Ebert, W. Weisweiler, and G. Akovali, J. Colloid Interface Sci., 170, 241 (1995).

    Article  CAS  Google Scholar 

  23. S. Deng, L. Djukic, R. Paton, and L. Ye, Compos. Part A, Appl. Sci. Manuf., 68, 121 (2015).

    Article  CAS  Google Scholar 

  24. B. Beylergil, M. Tanoğlu, and E. Aktaş, J. Appl. Polym. Sci., 134, 45244 (2017).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF-2018R1A6A1A03025761) was funded by the Ministry of Education, Science, and Technology (MEST), the Technology Innovation Program (20006662) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong U. Roh or Gibeop Nam.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, J.U., Hwang, YM., Roh, JS. et al. Effect of Polyamide Binder on Mechanical Properties of Carbon Fiber Spread Tow/Epoxy Composite. Fibers Polym 23, 1995–2002 (2022). https://doi.org/10.1007/s12221-022-4134-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4134-z

Keywords

Navigation