Log in

A Visually Observable Copper Ion Adsorption Membrane by Electrospinning Combined with Copper Ion Probe

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Heavy metal copper ion pollution has enormously threatened ecosystem and public health. So, materials for detecting and adsorbing copper ions (Cu2+) still remains challenging. Electrospinning nanomaterials have good application prospects in the field of water treatment because of its high specific surface area, high porosity and three-dimensional structure. Here, a visualized chitosan/polyacrylonitrile (CS/PAN) nanofiber membrane (NFM) was prepared via the amination modification of the electrospinning membrane and the do** of Cu2+ fluorescent probe to adsorb Cu2+. The effect of membrane absorbs Cu2+ in water was studied from the aspects of initial Cu2+ concentration, PH and adsorption time. It was found that when the pH value of the Cu2+ environment is 5–6, the weight gain rate of aminated nanofiber membrane is 46 %, and the adsorption time is 90 minutes, the adsorption capacity of the NFM can reach 164.3 mg/g. Then, rhodamine hydrazide derivatives were used as fluorescent Cu2+ probes, which were added to the spinning solution to prepare new NFM to achieve selective recognition of Cu2+. The membrane can be used multiple times and can achieve gradient color development of different concentrations of Cu2+, and the detection limit can reach 10−8 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Diao, W. Ni, T. Ni, and X. Yang, Guangdong Trace Elem. Sci., doi:https://doi.org/10.16755/j.cnki.issn.1006-446x.2004.03.001 (2004).

  2. R. McRae, P. Bagchi, S. Sumalekshmy, and C. Fahrni, Chem. Rev., 109, 4780 (2009).

    Article  CAS  Google Scholar 

  3. J. Yang, J. Xue, and G. J. Kuatian, Agro-Environ. Sci., 18, 268 (1999).

    Google Scholar 

  4. R. A. Wuana and F. E. Okieimen, ISRN Ecol., 2011, 402647 (2011).

    Google Scholar 

  5. M. L. Thompson and R. L. Scharf, J. Environ. Qual., 23, 378 (1994).

    Article  Google Scholar 

  6. W. W. Bedsworth and D. L. Sedlak, J. Environ. Sci. Technol., 33, 926 (1999).

    Article  CAS  Google Scholar 

  7. F. J. Stevenson and Y. Chen, Soil Sci. Soc. Am. J., 55, 1586 (1991).

    Article  CAS  Google Scholar 

  8. W. Kuo and G. F. Parkin, Wat. Res., 30, 915 (1996).

    Article  CAS  Google Scholar 

  9. N. I. Chubar, V. A. Kanibolotskyy, V. V. Strelko, G. G. Gallios, V. F. Samanidou, T. O. Shaposhnikova, V. G. Milgrandt, and I. Z. Zhuravlev, Colloids Surf., A., 255, 55 (2005).

    Article  CAS  Google Scholar 

  10. Y. Sang, Q. Gu, T. Sun, F. Li, and C. Liang, J. Hazard. Mater., 153, 860 (2008).

    Article  CAS  Google Scholar 

  11. T. A. Kurniawan, G. Y. S. Chan, W. H. Lo, and S. Babel, Chem. Eng. J., 118, 83 (2006).

    Article  CAS  Google Scholar 

  12. P. Hadi, M. Xu, C. Ning, C. S. K. Lin, and G. McKay, Chem. Eng. J., 260, 895 (2015).

    Article  CAS  Google Scholar 

  13. Y. H. Zhao, K. **a, and Z. Z. Zhang, Nanomater., 9, 455 (2019).

    Article  CAS  Google Scholar 

  14. Z. Z. Zhang, K. **a, and Z. W. Pan, Appl. Surf. Sci., 500, 143970 (2020).

    Article  CAS  Google Scholar 

  15. Z. Z. Zhang, Z. W. Pan, and Y. F. Guo, Appl. Catal. B Environ., 261, 118212 (2020).

    Article  CAS  Google Scholar 

  16. X. Wang, Z. Z. Zhang, and Y. H. Zhao, Nanomaterials, 8, 673 (2018).

    Article  Google Scholar 

  17. K. **a, Y. F. Guo, and Q. J. Shao, Nanomaterials, 9, 1532 (2019).

    Article  CAS  Google Scholar 

  18. R. Y. M. Huang, R. Pal, and G. Y. Moon, J. Membr. Sci., 160, 17 (1999).

    Article  CAS  Google Scholar 

  19. T. Uragami, S. Kato, and T. Miyata, J. Membr. Sci., 124, 203 (1997).

    Article  CAS  Google Scholar 

  20. J. Ge, Y. Cui, Y. Yan, and W. Jiang, J. Membr. Sci., 165, 75 (2000).

    Article  CAS  Google Scholar 

  21. S. Babel and T. A. Kurniawan, J. Hazard. Mater., 97, 219 (2003).

    Article  CAS  Google Scholar 

  22. A. Ghaee, M. Shariaty-Niassar, J. Barzin, and T. Matsuura, Chem. Eng. J., 165, 46 (2010).

    Article  CAS  Google Scholar 

  23. X. Xu, W. Hu, Q. Ke, H. Liu, J. Li, and Y. Zhao, Text. Res. J., 90, 1094 (2020).

    Article  CAS  Google Scholar 

  24. S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, Mater. Today, 9, 40 (2006).

    Article  CAS  Google Scholar 

  25. P. Kampalanonwat and P. Supaphol, Energy Procedia., 56, 142 (2014).

    Article  CAS  Google Scholar 

  26. A. H. Chen, S. C. Liu, C. Y. Chen, and C. Y. Chen, J. Hazard. Mater., 154, 184 (2008).

    Article  CAS  Google Scholar 

  27. J. Dong, J. Wei, H. Li, and L. Wei, J. Tian** Polytech. Univ., 26, 8 (2007).

    CAS  Google Scholar 

  28. P. Kampalanonwat and P. Supaphol, ACS Appl. Mater. Interfaces, 2, 3619 (2010).

    Article  CAS  Google Scholar 

  29. M. R. Huang, H. J. Lu, and X. G. Li, J. Mater. Chem., 22, 17685 (2012).

    Article  CAS  Google Scholar 

  30. H. Yan, J. Dai, Z. Yang, H. Yang, and R. Cheng, Chem. Eng. J., 174, 586 (2011).

    Article  CAS  Google Scholar 

  31. C. Shen, Y. Wen, X. Kang, and W. Liu, Chem. Eng. J., 166, 474 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowldgments

This research was partly supported by the ChangJiang Youth Scholars Program of China and grants (51773037 and 5197030342) from the National Natural Science Foundation of China to Prof. **aohong Qin as well as the “Innovation Program of Shanghai Municipal Education Commission”, “Fundamental Research Funds for the Central Universities” and “DHU Distinguished Young Professor Program” to her. This work has also been supported by grant 51803023 from the National Natural Science Foundation of China to Dr. Hongnan Zhang and the Shanghai Sailing Program (18YF1400400), the Project funded by China Postdoctoral Science Foundation (2018M640317) and the Fundamental Research Funds for the Central Universities (2232018A3-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aohong Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yao, C. & Qin, X. A Visually Observable Copper Ion Adsorption Membrane by Electrospinning Combined with Copper Ion Probe. Fibers Polym 22, 1844–1852 (2021). https://doi.org/10.1007/s12221-021-0737-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0737-z

Keywords

Navigation