Log in

Evaluation of Thermal and Acoustic Properties of Oil Palm Empty Fruit Bunch/Sugarcane Bagasse Fibres Based Hybrid Composites for Wall Buildings Thermal Insulation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the past decades, insulated material in building had been widely used and presently thermal insulation materials from agricultural biomass seen as an alternative materials to develop environmental comfort inside and outside of the building. The aim of this present study is to evaluate the thermal properties and acoustic behaviour of oil palm empty fruit bunch (OPEFB)/sugarcane bagasse (SCB) fibre reinforced biophenolic resin hybrid composites. Three different formulation ratio 70:30 (7OPEFB:3SCB), 50:50 (5OPEFB:5SCB) and 30:70 (3OPEFB:7SCB) of hybrid composite were fabricated by using hand lay-up method. The thermal conductivity testing was evaluated by means of a Quickline-TM30 apparatus and the acoustic absorption coefficient were measured by impedance tube. OPEFB:SCB fiber and phenolic resin were fabricated with target density range of 0.5 g/cm3. It’s clear from obtained result that 50:50 (5OPEFB:5SCB) hybrid composites can display better thermal stability with residue 45.04% and low thermal conductivity, 0.0863 W/mK. In acoustic test, this research found hybridization of 70:30 (7OPEFB:3SCB) fibre composite is slightly higher sound absorption coefficient followed by 5OPEFB:5SCB hybrid composite. The effect of different air gaps thickness (0 mm, 10 mm, 20 mm and 30 mm) also investigated. Overall, composites made with equal ratio combination fibre (5OPEFB:5SCB) presented better thermal performance and improve the sound absorption coefficient. In contrast in this research found that natural fibre have a unique properties and hybrid composites of OPEFB:SCB fibre had a huge potential as a eco-friendly thermal insulator and sound absorber in order to enhance a comfort temperature and reduce excessive sound to occupied in commercial wall building.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. P. Ashik and R. S. Sharma, J. Miner. Mater. Charact. Eng., 3, 420 (2015).

    CAS  Google Scholar 

  2. A. Shahzad, J. Compos. Mater., 46, 973 (2012).

    Article  CAS  Google Scholar 

  3. M. Y. Yaakob, I. P. Haeryip Sihombing, A. R. Jeefferie, A. Z. Ahmad Mujahid, A. G. Balamurugan, and M. N. Norazman, Global Eng. Tech. Rev., 1, 35 (2011).

    Google Scholar 

  4. T. G. Yashas Gowda, M. R. Sanjay, and S. Siengchin, Frontiers in Mater, 6, 226 (2019).

    Article  Google Scholar 

  5. M. R. Sanjay and S. Siengchin, J. Appl. Agr. Sci. Technol., 3, 178 (2019).

    Google Scholar 

  6. M. K. Gupta, R. K. Srivastava, S. Kumar, S. Gupta, and B. Nahak, Am. J. Poly. Sci. Eng., 3, 208 (2015).

    Google Scholar 

  7. M. Boopalan, M. Niranjanaa, and M. J. Umapathy, Compos. Part B: Eng., 51, 54 (2013).

    Article  CAS  Google Scholar 

  8. A. M. Papadopoulos, Energy Build., 37, 77 (2005).

    Article  Google Scholar 

  9. R. Mateus, S. Neiva, L. Bragança, P. Mendonça, and M. Macieira, Build. Environ., 67, 147 (2013).

    Article  Google Scholar 

  10. F. Asdrubali, S. Schiavoni, and K. Horoshenkov, Build. Acoust., 19, 283 (2012).

    Article  Google Scholar 

  11. C. Buratti, E. Belloni, E. Lascaro, G. A. Lopez, and P. Ricciardi, Ener. Procedia, 101, 972 (2016).

    Article  CAS  Google Scholar 

  12. M. da Silva Bertolini, C. A. de Morais, A. L. Christoforo, S. R. Bertoli, W. N. dos Santos, and F. A. Lahr, BioResources, 14, 3746 (2019).

    Google Scholar 

  13. F. Wang, L. C. Wang, J. G. Wu, and X. H. You, China Foundry, 4, 31 (2007).

    CAS  Google Scholar 

  14. M. Muhammad, N. Sa’at, H. Naim, M. C. Isa, N. H. Yussof, and M. S. Yati, Def. ST Tech. Bull., 5, 176 (2012).

    Google Scholar 

  15. M. H. Fouladi, M. Ayub, and M. J. Nor, Appl. Acoustics., 72, 35 (2011).

    Article  Google Scholar 

  16. U. Berardi and G. Iannace, Build. Environ., 94, 840 (2015).

    Article  Google Scholar 

  17. S. T. Carvalho, L. M. Mendes, A. A. Cesar, J. B. Flórez, F. A. Mori, and G. F. Rabelo, Mater Res., 18, 821 (2015).

    Article  CAS  Google Scholar 

  18. C. W. Kang, S. W. Oh, T. B. Lee, W. Kang, and J. Matsumura, J. Wood Sci., 58, 273 (2012).

    Article  CAS  Google Scholar 

  19. J. Cha, J. Seo, and J. S. Kim, J. Therm. Anal. Calorim., 109, 295 (2012).

    Article  CAS  Google Scholar 

  20. E. Latif, G. R. Rhydwen, D. C. Wijeyesekera, S. Tucker, A. Ciupala, and D. Newport, Adv. Comput. Technol., 6th Annual Conference, https://repository.uel.ac.uk/item/86132 (2011).

  21. C. Buratti, E. Moretti, E. Belloni, and F. Agosti, Energy Procedia, 78, 303 (2015).

    Article  Google Scholar 

  22. J. Khedari, N. Nankongnab, J. Hirunlabh, and S. Teekasap, Build. Environ., 39, 59 (2004).

    Article  Google Scholar 

  23. T. Ashour, H. Wieland, H. Georg, F. J. Bockisch, and W. Wu, Mater. Des., 31, 4746 (2010).

    Article  Google Scholar 

  24. K. Manohar, D. Ramlakhan, G. Kochhar, and S. Haldar, J. Brazil. Soc. Mecha Sci. Eng., 28, 45 (2006).

    Google Scholar 

  25. N. A. Ramlee, M. Jawaid, E. S. Zainudin, and S. A. Yamani, J. Mater. Res. Technol., 8, 3466 (2019).

    Article  CAS  Google Scholar 

  26. V. Vilay, M. Mariatti, R. M. Taib, and M. Todo, Compos. Sci. Technol., 68, 631 (2008).

    Article  CAS  Google Scholar 

  27. M. S. Sreekala, M. G. Kumaran, S. Joseph, M. Jacob, and S. Thomas, Appl. Compos. Mater., 7, 295 (2000).

    Article  CAS  Google Scholar 

  28. MS 1408:1997, “Specification of Oil Palm Empty Fruit Bunch Fibre”, Malaysian Standard, 1997.

  29. ASTM D5334, “Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure”, ASTM International, West Conshohocken, PA, 1992.

    Google Scholar 

  30. ISO 10534-2:1998, “Standard B, Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method”, 1998.

  31. U. A. Malawade and M. G. Jadhav, J. Mater. Res. Technol., 9, 882 (2020).

    Article  Google Scholar 

  32. A. Putra, Y. Abdullah, H. Efendy, W. M. Farid, M. R. Ayob, and M. S. Py, Procedia Eng., 53, 632 (2013).

    Article  Google Scholar 

  33. S. M. Morteza and H. Fallah Moafi, J. Ind. Text., 37, 31 (2007).

    Article  CAS  Google Scholar 

  34. E. Indarti and W. D. Wanrosli, J. Physics: Conference Series, 622, 12 (2015).

    Google Scholar 

  35. N. A. Ramlee, M. Jawaid, E. S. Zainudin, and S. A. Yamani, J. Bionic Eng., 16, 175 (2019).

    Article  Google Scholar 

  36. M. S. Sreekala, M. G. Kumaran, and M. L. Geethakumariamma, Adv. Compos. Mater., 13, 171 (2004).

    Article  CAS  Google Scholar 

  37. M. J. John and S. Thomas, Carbohydr. Polym., 71, 343 (2008).

    Article  CAS  Google Scholar 

  38. Y. Chen, P. Chen, C. Hong, B. Zhang, and D. Hui, Compos. Part B: Eng., 47, 320 (2013).

    Article  CAS  Google Scholar 

  39. K. A. Trick and T. E. Saliba, Carbon, 33, 1509 (1995).

    Article  CAS  Google Scholar 

  40. R. Agrawal, N. S. Saxena, K. B. Sharma, M. S. Sreekala, and S. Thomas, Ind. J. Pure Appl. Phys., 37, 865 (1999).

    CAS  Google Scholar 

  41. B. Nagy, S. G. Nehme, and D. Szagri, Ener. Procedia, 78, 2742 (2015).

    Article  CAS  Google Scholar 

  42. H. Binici, M. Eken, M. Kara, and M. Dolaz, IEEE Explore, doi: https://doi.org/10.1109/ICRERA.2013.6749868 (2013).

  43. X. Y. Zhou, F. Zheng, H. G. Li, and C. L. Lu, Energy Build., 42, 1070 (2010).

    Article  Google Scholar 

  44. J. C. Cravo, D. de Lucca Sartori, G. Mármol, G. M. Schmidt, J. C. de Carvalho Balieiro, and J. Fiorelli, Constr. Build. Mater., 151, 414 (2017).

    Article  CAS  Google Scholar 

  45. A. S Ismail, M. Jawaid, and J. Naveen, Materials, 12, 2094 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  46. H. Zhou, B. Li, and G. Huang, J. Appl. Polym. Sci., 101, 2675 (2006).

    Article  CAS  Google Scholar 

  47. F. Forouharmajd and Z. Mohammadi, Iran. J. Sci. Technol., 42, 73 (2018).

    Article  Google Scholar 

  48. N. **gFeng and Z. Gui**, J. Vib. Control., 22, 2861 (2016).

    Article  Google Scholar 

  49. Z. Y. Lim, A. Putra, M. J. Nor, and M. Y. Yaakob, Appl. Acous., 130, 107 (2018).

    Article  Google Scholar 

  50. T. Koizumi, N. Tsujiuchi, and A. Adachi, WIT Transact. on The Built Environ., 59, 157 (2002).

    Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support from the University Putra Malaysia, Malaysia through Putra Berimpak Grant No 9668300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jawaid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramlee, N.A., Jawaid, M., Ismail, A.S. et al. Evaluation of Thermal and Acoustic Properties of Oil Palm Empty Fruit Bunch/Sugarcane Bagasse Fibres Based Hybrid Composites for Wall Buildings Thermal Insulation. Fibers Polym 22, 2563–2571 (2021). https://doi.org/10.1007/s12221-021-0224-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0224-6

Keywords

Navigation