Log in

The Grassmannian \(L_p\)-sine Blaschke–Santaló Inequality

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Based on the mixed Grassmannian \(L_p\)-Busemann random simplex inequality, the Grassmannian \(L_p\)-sine Blaschke–Santaló inequality is established in this paper. This extends the recently obtained \(L_p\)-sine Blaschke–Santaló inequality to the Grassmannian form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artstein-Avidan, S., Klartag, B., Milman, V.: The Santaló point of a function, and a functional form of the Santaló inequality. Mathematika 51, 33–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artstein-Avidan, S., Sadovsky, S., Wyczesany, K.: Optimal measure transportation with respect to non-traditional costs. Calc. Var. Partial Differ. Equ. 62, 39 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bianchi, G., Kelly, M.: A Fourier analytic proof of the Blaschke–Santaló inequality. Proc. Am. Math. Soc. 143, 4901–4912 (2015)

    Article  MATH  Google Scholar 

  4. Blaschke, W.: Über affine Geometrie VII: Neue Extremeingenschaften von Ellipse und Ellipsoid. Ber. Verh. Sächs. Akad. Wiss. Math. Phys. Kl. 69, 412–420 (1917)

    MATH  Google Scholar 

  5. Bourgain, J., Meyer, M., Milman, V., Pajor, A.: On a geometric inequality (J. Lindenstrauss and V. Milman, eds.), Lecture Notes in Math. Geom. Aspects Funct. Anal. 1317, 271–282 (1988)

    Article  Google Scholar 

  6. Busemann, H.: The Geometry of Geodesics. Academic Press Inc., New York (1955)

    MATH  Google Scholar 

  7. Dann, S., Paouris, G., Pivovarov, P.: Bounding marginal densities via affine isoperimetry. Proc. Lond. Math. Soc. 113, 140–162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fradelizi, M., Meyer, M.: Some functional forms of Blaschke–Santaló inequality. Math. Z. 256, 379–395 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gardner, R.J.: Geometric Tomography, Second Edition, Encyclopedia of Mathematics and its Applications, 58. Cambridge University Press, New York (2006)

    Google Scholar 

  10. Götze, F., Gusakova, A., Zaporozhets, D.: Random affine simplexes. J. Appl. Probab. 56, 39–51 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hofstätter, G., Schuster, F.: Blaschke–Santaló inequalities for Minkowski and Asplund endomorphisms. Int. Math. Res. Not. 2023, 1378–1419 (2023)

    Article  MATH  Google Scholar 

  12. Huang, Q., Li, A.-J., **, D., Ye, D.: On the sine polarity and the \(L_p\)-sine Blaschke–Santaló inequality. J. Funct. Anal. 283, 32 (2022)

    Article  MATH  Google Scholar 

  13. Kolesnikov, A., Werner, E.: Blaschke–Santaló inequality for many functions and geodesic barycenters of measures. Adv. Math. 396, 108110 (2022)

    Article  MATH  Google Scholar 

  14. Li, A.-J., **, D., Zhang, G.: Volume inequalities of convex bodies from cosine transforms on Grassmann manifolds. Adv. Math. 304, 494–538 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, A.-J., Huang, Q., **, D.: New sine ellipsoids and related volume inequalities. Adv. Math. 353, 281–311 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Litvak, A.E., Zaporozhets, D.N.: Random section and random simplex inequality. Zap. Nauchn. Sem. POMI 505, 162–171 (2021). (Russian)

    MathSciNet  Google Scholar 

  17. Lutwak, E.: The Brunn–Minkowski–Firey theory II: affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lutwak, E., Zhang, G.: Blaschke–Santaló inequalities. J. Differ. Geom. 47, 1–16 (1997)

    Article  MATH  Google Scholar 

  19. Meyer, M., Pajor, A.: On the Blaschke–Santaló inequality. Arch. Math. (Basel) 55, 82–93 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meyer, M., Reisner, S.: Shadow systems and volumes of polar convex bodies. Mathematika 53, 129–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meyer, M., Werner, E.: The Santaló-regions of a convex body. Trans. Am. Math. Soc. 350, 4569–4591 (1998)

    Article  MATH  Google Scholar 

  22. Petty, C.M.: Affine isoperimetric problems, Discrete Geometry and Convexity (J. E. Goodman, E. Lutwak, J. Malkevitch, R. Pollack, eds). Ann. N. Y. Acad. Sci. 440, 113–127 (1985)

    Article  Google Scholar 

  23. Saint-Raymond, J.: Sur le volume des corps convexes symétriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981. Publ. Math. Univ. Pierre et Marie Curie Paris 11, 25 (1981)

    Google Scholar 

  24. Santaló, L.A.: Un invariante afin para los cuerpos convexos de espacio de \(n\) dimensiones. Portugal. Math. 8, 155–161 (1949)

    MathSciNet  Google Scholar 

  25. Saroglou, C.: Characterizations of extremals for some functionals on convex bodies. Can. J. Math. 62, 1404–1418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Second Expanded Edition, Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  27. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and its Applications, Springer, Berlin (2008)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the referee for the valuable suggestions and the very careful reading of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by NSFC (Grant No. 11701219) and the Qin Shen Scholar Program of Jiaxing University. The second author was supported by Natural Science Foundation of Zhejiang Province (Grant No. LY22A010001) and NSFC (Grant No. 12231006).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Li, AJ. The Grassmannian \(L_p\)-sine Blaschke–Santaló Inequality. J Geom Anal 33, 317 (2023). https://doi.org/10.1007/s12220-023-01381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01381-z

Keywords

Mathematics Subject Classification

Navigation