Log in

Continuous Version of the Approximate Geometric Brascamp–Lieb Inequalities

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Given \(\gamma >1\) we say that a Borel measure \(\nu \) on \(S^{n-1}\) is a \(\gamma \)-approximation of an isotropic measure if

$$\begin{aligned}I_n\preceq T_{\nu }=\int _{S^{n-1}}u\otimes u\,\text {d}\nu (u)\preceq \gamma I_n,\end{aligned}$$

where \(I_n\) is the identity matrix. We provide a generalization of Barthe’s continuous version of the Brascamp–Lieb inequalities to the context of these approximate isotropic measures, and we apply these inequalities to obtain stability results for some classical positions of convex bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs, vol. 202. American Mathematical Society, Providence (2015)

  2. Ball, K.M.: Volumes of Sections of Cubes and Related Problems. Lecture Notes in Mathematics, vol. 1376. Springer, Berlin (1989)

  3. Ball, K.M.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. (2) 44, 351–359 (1991)

    Article  MathSciNet  Google Scholar 

  4. Ball, K.M.: Convex geometry and functional analysis. In: Handbook of the geometry of Banach Spaces, vol. I, pp. 161–194. North-Holland, Amsterdam (2001)

  5. Bapat, R.B.: Mixed discriminants of positive semidefinite matrices. Linear Algebra Appl. 126, 107–124 (1989)

    Article  MathSciNet  Google Scholar 

  6. Barthe, F.: Inégalités de Brascamp–Lieb et convexité. C. R. Acad. Sci. Paris Ser. I Math. 324(8), 885–888 (1997)

  7. Barthe, F.: On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134, 335–361 (1998)

    Article  MathSciNet  Google Scholar 

  8. Barthe, F.: A continuous version of the Brascamp–Lieb inequalities. In: Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1850, pp. 53–63. Springer, Berlin (2004)

  9. Bourgain, J., Milman, V.D.: New volume ratio properties for convex symmetric bodies in \({{\mathbb{R}}}^n\). Invent. Math. 88, 319–340 (1987)

    Article  MathSciNet  Google Scholar 

  10. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse and its generalization to more than three functions. Adv. Math. 20, 151–173 (1976)

    Article  MathSciNet  Google Scholar 

  11. Brazitikos, S.: Brascamp–Lieb inequality and quantitative versions of Helly’s theorem. Mathematika 63, 272–291 (2017)

    Article  MathSciNet  Google Scholar 

  12. Giannopoulos, A., Milman, V.D.: Extremal problems and isotropic positions of convex bodies. Isr. J. Math. 117, 29–60 (2000)

    Article  MathSciNet  Google Scholar 

  13. Giannopoulos, A., Papadimitrakis, M.: Isotropic surface area measures. Mathematika 46, 1–13 (1999)

    Article  MathSciNet  Google Scholar 

  14. Giannopoulos, A., Milman, V.D., Rudelson, M.: Convex bodies with minimal mean width. In: Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1745, pp. 81–93 (2000)

  15. Gordon, Y., Meyer, M., Reisner, S.: Zonoids with minimal volume product—a new proof. Proc. Am. Math. Soc. 104, 273–276 (1988)

    MathSciNet  MATH  Google Scholar 

  16. John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. Courant Anniversary Volume, pp. 187–204. Interscience, New York (1948)

  17. Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for subspaces of \(L^p\). J. Differ. Geom. 68, 159–184 (2004)

    Article  Google Scholar 

  18. Lutwak, E., Yang, D., Zhang, G.: A volume inequality for polar bodies. J. Differ. Geom. 84, 163–178 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Maresch, G., Schuster, F.: The sine transform of isotropic measures. Int. Math. Res. Not. IMRN 4, 717–739 (2012)

    Article  MathSciNet  Google Scholar 

  20. Petty, C.M.: Surface area of a convex body under affine transformations. Proc. Am. Math. Soc. 12, 824–828 (1961)

    Article  MathSciNet  Google Scholar 

  21. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd expanded edn. Encyclopedia of Mathematics and Its Applications, vol. 151, Cambridge University Press, Cambridge (2014)

  22. Valdimarsson, S.: Geometric Brascamp–Lieb has the optimal best constant. J. Geom. Anal. 21(4), 1036–1043 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Hellenic Foundation for Research & Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers” (Project Number: 1849). We would like to thank the referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silouanos Brazitikos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazitikos, S., Giannopoulos, A. Continuous Version of the Approximate Geometric Brascamp–Lieb Inequalities. J Geom Anal 32, 174 (2022). https://doi.org/10.1007/s12220-022-00909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00909-z

Keywords

Mathematics Subject Classification

Navigation