Log in

Long Time Existence for the Bosonic Membrane in the Light Cone Gauge

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper aims to establish the well-posedness on time interval \([0,\varepsilon ^{-\frac{1}{2}}T]\) of the classical initial problem for the bosonic membrane in the light cone gauge. Here \(\varepsilon \) is the small parameter which measures the nonlinear effects. The bosonic membrane is timelike submanifolds with vanishing mean curvature. Since the initial Riemannian metric may be degenerate, the corresponding equation can be reduced to a quasi-linear degenerate hyperbolic system of second order with an area preserving constraint via a Hamiltonian reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, P., Andersson, L., Isenberg, J.: Timelike minimal submanifolds of general co-dimension in Minkowski space time. J. Hyperbolic Differ. Equ. 3, 691–700 (2006)

    Article  MathSciNet  Google Scholar 

  2. Allen, P., Andersson, L., Restuccia, A.: Local well-posedness for membranes in the light cone gauge. Commun. Math. Phys. 301, 383–410 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bellettini, G., Hoppe, J., Novaga, M., Orlandi, G.: Closure and convexity results for closed relativistic strings. Complex Anal. Oper. Theory 4, 473–496 (2010)

    Article  MathSciNet  Google Scholar 

  4. Brendle, S.: Hypersurfaces in Minkowski space with vanishing mean curvature. Commun. Pure. Appl. Math. 55, 1249–1279 (2002)

    Article  MathSciNet  Google Scholar 

  5. Christodoulou, D.: The Formation of Black Holes in General Relativity. EMS Monographs in Mathematics. EMS Publishing House, Zürich (2009)

    Book  Google Scholar 

  6. Colombini, F., Spagnolo, S.: An example of a weakly hyperbolic Cauchy problem not well posed in \( {C}^{\infty }\). Acta Math. 148, 243–253 (1982)

    Article  MathSciNet  Google Scholar 

  7. Colombini, F., De Giorgi, E., Spagnolo, S.: Sur les éequations hyperboliques aves des coefficients qui dépendent que du temps. Ann. Scuola Norm. Sup. Pisa. 6, 511–559 (1979)

    MATH  Google Scholar 

  8. Dirac, P.A.M.: Lectures on Quantum Mechanics. Belfer Graduate School of Science Monographs Series, Vol. 2. Belfer Graduate School of Science, New York (1967). Second printing of the 1964 original

  9. Han, Q.: Local solutions to a class of Monge–Ampere equations of mixed type. Duke. Math. J. 136, 421–473 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Han, Q.: Energy estimates for a class of degenerate hyperbolic equations. Math. Ann. 347, 339–364 (2010)

    Article  MathSciNet  Google Scholar 

  11. Han, Q., Hong, J.X., Lin, C.S.: On the cauchy problem of degenerate hyperbolic equations. Trans. Am. Math. Soc. 358, 4021–4044 (2006)

    Article  MathSciNet  Google Scholar 

  12. Hope, J.: Some classical solutions of relativistic membrane equations in \(4\)-space-time dimensions. Phys. Lett. B. 329, 10–14 (1994)

    Article  MathSciNet  Google Scholar 

  13. Implicit Function Theorems. Stanford Lecture Notes, University, Stanford (1977)

  14. He, C.L., Kong, D.X.: Spherical symmetric solutions for the motion of relativistic membranes in the Schwarzschild spacetime. J. Math. Phys. 50, 083516 (2009)

    Article  MathSciNet  Google Scholar 

  15. He, C.L., Huang, S.J.: Harmonic coordinates in the string and membrane equations. J. Math. Phys. 51, 093510 (2010)

    Article  MathSciNet  Google Scholar 

  16. Huang, S.J., Kong, D.X.: Equations for the motion of relativistic torus in the Minkowski space \(R^{1+n}\). J. Math. Phys. 48, 083510 (2007)

    Article  MathSciNet  Google Scholar 

  17. Klainerman, S.: Global existence for nonlinear wave equations. Commun. Pure Appl. Math. 33, 43–101 (1980)

    Article  MathSciNet  Google Scholar 

  18. Klainerman, S.: Long-time behavior of solutions to nonlinear evolution equations. Arch. Ration. Mech. Anal. 78, 73–98 (1982)

    Article  MathSciNet  Google Scholar 

  19. Kong, D.X., Zhang, Q., Zhou, Q.: The dynamics of relativistic strings moving in the Minkowski space \( {R}^{1+n}\). Commun. Math. Phys. 269, 135–174 (2007)

    Google Scholar 

  20. Lindblad, H.: A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time. Proc. Am. Math. Soc. 132, 1095–1102 (2003)

    Article  MathSciNet  Google Scholar 

  21. Moser, J.: A rapidly converging iteration method and nonlinear partial differential equations I–II. Ann. Scuola Norm. Sup. Pisa. 20(265–313), 499–535 (1966)

    MATH  Google Scholar 

  22. Nash, J.: The embedding for Riemannian manifolds. Am. Math. 63, 20–63 (1956)

    MATH  Google Scholar 

  23. Nguyen, L., Tian, G.: On smoothness of timelike maximal cylinders in three-dimensional vacuum spacetimes. Classical Quant. Grav. 30, 165010 (2013)

    Article  MathSciNet  Google Scholar 

  24. Nishitani, T.: On the cauchy problem for weakly hyperbolic equations. Commun. PDE 3, 319–333 (1978)

    Article  MathSciNet  Google Scholar 

  25. Nishitani, T.: The Cauchy problem for \(D_t^2-D_xa(t, x)D_x\) in Gevrey class of order \(s>2\). Commun. PDE 31, 1289–1319 (2006)

    Article  Google Scholar 

  26. Oleinik, O.A.: On the Cauchy problem for weakly hyperbolic equations. Commun. Pure. Appl. Math. XXIII, 569–586 (1970)

    Article  MathSciNet  Google Scholar 

  27. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear second order evolution inclusions with noncoercive viscosity term. J. Differ. Equ. 264, 4749–4763 (2018)

    Article  MathSciNet  Google Scholar 

  28. Rădulescu, V.D.: Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods. Contemporary Mathematics and Its Applications, vol. 6. Hindawi Publishing Corporation, New York (2008)

    Book  Google Scholar 

  29. Schwartz, J.T.: Nonlinear Functional Analysis. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  30. Yan, W.P.: The motion of closed hypersurfaces in the central force field. J. Differ. Equ. 261, 1973–2005 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author expresses his sincere thanks to Prof G. Tian for introducing him to the subject of minimal surface and his many discussions, and his sincere thanks to Prof Q. Han for his discussion on Nash–Moser iteration scheme, and thanks to Prof S.J. Huang for his interest on this problem and some discussions. The first author is supported by NSFC (No. 11771359), and the Fundamental Research Funds for the Central Universities (Nos. 20720190070 and 20720180009). The second author is supported by NSFC (No. 11871199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binlin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Zhang, B. Long Time Existence for the Bosonic Membrane in the Light Cone Gauge. J Geom Anal 31, 395–422 (2021). https://doi.org/10.1007/s12220-019-00269-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00269-1

Keywords

Mathematics Subject Classification

Navigation