Log in

Stein Neighborhood Bases of Embedded Strongly Pseudoconvex Domains and Approximation of Map**s

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we construct a Stein neighborhood basis for any compact subvariety A with strongly pseudoconvex boundary bA and Stein interior A \ bA in a complex space X. This is an extension of a well known theorem of Siu. When A is a complex curve, our result coincides with the result proved by Drinovec-Drnovšek and Forstnerič. We shall adapt their proof to the higher dimensional case, using also some ideas of Demailly’s proof of Siu’s theorem. For embedded strongly pseudoconvex domain in a complex manifold we also find a basis of tubular Stein neighborhoods. These results are applied to the approximation problem for holomorphic map**s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, W.: Hölderabschätzungen für Ableitungen von Lösungen der Gleichung \(\overline{\partial}u=f\) bei streng pseudokonvexem Rand. Manuscr. Math. 13, 381–414 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bedford, E., Fornæss, J.-E.: Domains with pseudoconvex neighborhood systems. Invent. Math. 47, 1 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chirka, E.M.: Approximation by holomorphic functions on smooth manifolds in ℂn. Mat. Sb. (N.S.) 78(120), 101 (1969) (in Russian). English transl.: Math. USSR Sb. 7, 953 (1969)

    MathSciNet  Google Scholar 

  4. Colţoiu, M.: Complete locally pluripolar sets. J. Reine Angew. Math. 412, 108–112 (1990)

    MATH  MathSciNet  Google Scholar 

  5. Demailly, J.-P.: Cohomology of q-convex spaces in top degrees. Math. Z. 204, 283–295 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Demailly, J.-P.: Complex analytic and algebraic geometry. http://www-fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.ps.gz

  7. Diederich, K., Fornæss, J.-E.: Pseudoconvex domains: an example with nontrivial Nebenhülle. Math. Ann. 225, 2752 (1977)

    Article  Google Scholar 

  8. Diederich, K., Fornæss, J.-E.: Pseudoconvex domains: existence of Stein neighborhoods. Duke Math. J. 44, 641 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Drinovec-Drnovšek, B., Forstnerič, F.: Approximation of holomorphic map**s on strongly pseudoconvex domains. Forum. Math. (2008, to appear). arxiv: math.CV/0607185

  10. Drinovec-Drnovšek, B., Forstnerič, F.: Holomorphic curves in complex spaces. Duke Math. J. 139, 203–254 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fornaess, J.E., Nagel, A.: The Mergelyan property for weakly pseudoconvex domains. Manuscr. Math. 22, 199–208 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Forstnerič, F.: Extending holomorphic map**s from subvarieties in Stein manifolds. Ann. Inst. Fourier 55, 733–751 (2005)

    MATH  Google Scholar 

  13. Forstnerič, F.: Runge approximation on convex sets implies Oka’s property. Ann. Math. 163(2), 689–707 (2006)

    Article  MATH  Google Scholar 

  14. Forstnerič, F.: Manifolds of holomorphic map**s from strongly pseudoconvex domains. Asian J. Math. 11, 113–126 (2007)

    MATH  MathSciNet  Google Scholar 

  15. Forstnerič, F., Laurent–Thiébaut, C.: Stein compacts in Levi-flat hypersurfaces. Trans. Am. Math. Soc. (2007). Electronic: S0002-9947-07-04263-8

  16. Forstnerič, F., Low, E., Øvrelid, N.: Solving the d and \(\overline{\partial}\) -equations in thin tubes and applications to map**s. Mich. Math. J. 49, 369–416 (2001)

    Article  MATH  Google Scholar 

  17. Grauert, H.: On Levi’s problem and the embedding of real-analytic manifolds. Ann. Math. 68(2), 460–472 (1958)

    Article  MathSciNet  Google Scholar 

  18. Grauert, H., Remmert, R.: Theory of Stein Spaces. Grundlehren Math. Wiss., vol. 227. Springer, New York (1977)

    MATH  Google Scholar 

  19. Gunning, R., Text, C., Rossi, H.: Analytic Functions of Several Variables. Prentice-Hall, Eaglewood Cliffs (1965)

    MATH  Google Scholar 

  20. Henkin, G.M.: Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications. Mat. Sb. 78(120), 611–632 (1969) (in Russian)

    MathSciNet  Google Scholar 

  21. Henkin, G.M., Leiterer, J.: Theory of Functions on Complex Manifolds. Akademie, Berlin (1984)

    MATH  Google Scholar 

  22. Heunemann, D.: An approximation theorem and Oka’s principle for holomorphic vector bundles which are continuous on the boundary of strictly pseudoconvex domains. Math. Nach. 127, 275–280 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Heunemann, D.: Theorem B for Stein manifolds with strictly pseudoconvex boundary. Math. Nach. 128, 87–101 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd edn. North Holland, Amsterdam (1990)

    MATH  Google Scholar 

  25. Kerzman, N.: Hölder and L p-estimates for solutions of \(\overline {\partial}u=f\) in strongly pseudoconvex domains. Commun. Pure Appl. Math. 24, 301–379 (1971)

    Article  MathSciNet  Google Scholar 

  26. Leiterer, J.: Theorem B für analytische Funktionen mit stetigen Randwerten. Beitr. Anal. 8, 95–102 (1976)

    MathSciNet  Google Scholar 

  27. Lieb, I.: Ein Approximationssatz auf streng pseudokonvexen Gebieten. Math. Ann. 184, 56–60 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lieb, I., Michel, J.: The Cauchy-Riemann Complex. Integral Formulæand Neumann Problem. Aspects of Mathematics, vol. E34. Vieweg, Braunschweig (2002)

    Google Scholar 

  29. Lieb, I., Range, R., Text, M.: Lösungsoperatoren für den Cauchy-Riemann-Komplex mit \(\mathcal{C}^{k}\) -abschätzungen. Math. Ann. 253, 145–165 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lloyd, N.G.: Degree Theory. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  31. Michel, J., Perotti, A.: \(\mathcal{C}^{k}\) -regularity for the \(\overline{\partial }\) -equation on strictly pseudoconvex domains with piecewise smooth boundaries. Math. Z. 203, 415–427 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Narasimhan, R.: The Levi problem for complex spaces. Math. Ann. 142, 355–365 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  33. Narasimhan, R.: The Levi problem for complex spaces II. Math. Ann. 146, 195–216 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nirenberg, R., Wells, R., Text, O.: Approximation theorems on differentiable submanifolds of a complex manifols. Trans. Am. Math. Soc. 142, 15–35 (1969)

    Article  MATH  Google Scholar 

  35. Ramirez de Arelano, E.: Ein Division problem und Randintegraldarstellung in der komplexen Analysis. Math. Ann. 184, 172–187 (1970)

    Article  MathSciNet  Google Scholar 

  36. Range, R., Text, M., Siu, Y.-T.: Uniform estimates for the \(\overline{\partial}\) -equation on domains with piecewise smooth strictly pseudoconvex boundaries. Math. Ann. 206, 325–354 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  37. Remmert, R.: Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci. Paris 243, 118–121 (1956)

    MATH  MathSciNet  Google Scholar 

  38. Sibony, N.: Une classe de domaines pseudoconvexes. Duke Math. J. 55, 2999 (1987)

    MathSciNet  Google Scholar 

  39. Sibony, N.: Some aspects of weakly pseudoconvex domains. In: Several Complex Variables and Complex Geometry, Part 1, Santa Cruz, CA, 1989. Proc. Symp. Pure Math., vol. 52, p. 199. Am. Math. Soc., Providence (1991)

    Google Scholar 

  40. Siu, Y.-T.: Every Stein subvariety admits a Stein neighborhood. Invent. Math. 38, 89–100 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  41. Siu, Y.-T.: The \(\overline{\partial}\) -problem with uniform bounds on derivatives. Math. Ann. 207, 163–176 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  42. Stein, K.: Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen Periodizitätsmoduln und das zweite Cousinsche Problem. Math. Ann. 123, 201–222 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  43. Stensønes, B.: Stein neighborhoods. Math. Z. 195, 433 (1987)

    Article  MathSciNet  Google Scholar 

  44. Stolzenberg, G.: Polynomially and rationally convex sets. Acta Math. 109, 259–289 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wermer, J.: The hull of a curve in ℂn. Ann. Math. 68(2), 550–561 (1958)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadej Starčič.

Additional information

Communicated by John Erik Fornaess.

Research supported by grants ARRS (3311-03-831049), Republic of Slovenia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starčič, T. Stein Neighborhood Bases of Embedded Strongly Pseudoconvex Domains and Approximation of Map**s. J Geom Anal 18, 1133–1158 (2008). https://doi.org/10.1007/s12220-008-9037-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-008-9037-8

Keywords

Mathematics Subject Classification (2000)

Navigation