Log in

Topology optimization of micro piezoelectric actuators and energy harvesters at femto-st institute: summary and MATLAB code implementation

  • Research
  • Published:
Journal of Micro and Bio Robotics Aims and scope Submit manuscript

Abstract

This paper primarily summarize the research efforts conducted within the AS2M department of the FEMTO-ST institute, focusing on topology optimization of piezoelectric structures. In this regard, the principles and the possibilities offered by topology optimization with a specific emphasis on the SIMP approach (Solid Isotropic Material with Penalization) are highlighted. The design processes of piezoelectric micro-actuators and energy harvesters are described, The optimized piezoelectric structures are presented and the improvements over classical designs are assessed. Moreover, in this paper, we present the eigenvalue optimization of the piezoelectric energy harvester by tuning the mass of attachment as an optimization variable. The theoretical development is accompanied by the developed MATLAB code to implement the topology optimization algorithm. This code is the update and extension of the previously published codes by authors for piezoelectric structures while it will be the first published code of its kind that considers the tuning of the natural frequency of the piezo structure. Finally, the paper discusses the feasibility and the potential of multi-material topology optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Régnier S, Chaillet N (2010) Microrobotics for Micromanipulation (Wiley-ISTE, publisher)

  2. Schlinquer T, Mohand-Ousaid A, Rakotondrabe M (2017) Optimal design of a unimorph piezoelectric cantilever devoted to energy harvesting to supply animal tracking devices. IFAC-PapersOnLine 50(1):14600–14605

    Article  Google Scholar 

  3. Adali S, Bruch JC Jr, Sadek IS, Sloss JM (2000) Robust shape control of beams with load uncertainties by optimally placed piezo actuators. Struct Multidiscip Optim 19(4):274–281. https://doi.org/10.1007/s001580050124

    Article  Google Scholar 

  4. Sadri AM, Wright JR, Wynne RJ (1999) Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms. Smart Mater Struct 8(4):490. https://doi.org/10.1088/0964-1726/8/4/306

    Article  Google Scholar 

  5. Rakotondrabe M, Khadraoui S (2013) Design of Piezoelectric Actuators with Guaranteed Performances Using the Performances Inclusion Theorem (Springer New York), pp. 41–59. https://doi.org/10.1007/978-1-4614-6684-0_3

  6. Khadraoui S, Rakotondrabe M, Lutz P (2014) Optimal design of piezoelectric cantilevered actuators with guaranteed performances by using interval techniques. IEEE/ASME Trans Mechatron 19(5):1660–1668

    Article  Google Scholar 

  7. Grossard M, Rotinat-Libersa C, Chaillet N (2007) In: 2007 IEEE/ASME international conference on advanced intelligent mechatronics, pp. 1–6. https://doi.org/10.1109/AIM.2007.4412553

  8. Grossard M, Rotinat-Libersa C, Chaillet N, Boukallel M (2009) Mechanical and control-oriented design of a monolithic piezoelectric microgripper using a new topological optimization method. IEEE/ASME Trans Mechatron 14(1):32–45

    Article  Google Scholar 

  9. Bendsøe M, Sigmund O (2004) Topology optimization. Theory, methods, and applications. 2nd ed., corrected printing . https://doi.org/10.1007/978-3-662-05086-6

  10. Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21(2):120–127

    Article  Google Scholar 

  11. Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    Article  Google Scholar 

  12. Ruiz D, Sigmund O (2018) Optimal design of robust piezoelectric microgrippers undergoing large displacements. Struct Multidiscip Optim 57:1–12. https://doi.org/10.1007/s00158-017-1863-5

    Article  MathSciNet  Google Scholar 

  13. Homayouni-Amlashi A, Schlinquer T, Mohand-Ousaid A, Rakotondrabe M (2020) 2d topology optimization matlab codes for piezoelectric actuators and energy harvesters. Struct Multidiscip Optim pp 1–32

  14. Wang C, Zhao Z, Zhou M, Sigmund O, Zhang XS (2021) A comprehensive review of educational articles on structural and multidisciplinary optimization. Struct Multidiscip Optim 64(5):2827–2880

    Article  Google Scholar 

  15. Homayouni-Amlashi A, Schlinquer T, Mohand-Ousaid A, Rakotondrabe M (2020) 2D topology optimization MATLAB codes for piezoelectric actuators and energy harvesters. Struct Multidiscip Optim p. 0 . https://doi.org/10.1007/s00158-020-02726-w. https://hal.archives-ouvertes.fr/hal-03033055

  16. Schlinquer T, Homayouni-Amlashi A, Rakotondrabe M, Ousaid AM (2020) Design of piezoelectric actuators by optimizing the electrodes topology. IEEE Robot Autom Lett 6(1):72–79

    Article  Google Scholar 

  17. Standard AAN (1984) Ieee standard on piezoelectricity. IEEE Trans Sonics Ultrason 31(2) . https://doi.org/10.1109/T-SU.1984.31464

  18. Lerch R (1990) Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Trans Ultrason Ferroelectr Freq Control 37(3):233–247

    Article  Google Scholar 

  19. Dong S (2012) Review on piezoelectric, ultrasonic, and magnetoelectric actuators. J Adv Dielectr 2:1230001

    Article  Google Scholar 

  20. Grossard M, Rotinat-Libersa C, Chaillet N, Boukallel M (2009) Mechanical and control-oriented design of a monolithic piezoelectric microgripper using a new topological optimization method. IEEE/ASME Trans Mechatron 14(1):32–45

    Article  Google Scholar 

  21. Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications (Springer Science & Business Media)

  22. Noh JY, Yoon GH (2012) Topology optimization of piezoelectric energy harvesting devices considering static and harmonic dynamic loads. Adv Eng Softw 53:45–60

    Article  Google Scholar 

  23. Kögl M, Silva EC (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14(2):387

    Article  Google Scholar 

  24. Zhu B, Zhang X, Zhang H, Liang J, Zang H, Li H, Wang R (2020) Design of compliant mechanisms using continuum topology optimization: A review. Mech Mach Theory 143:103622

    Article  Google Scholar 

  25. Svanberg K (1987) The method of moving asymptotes–a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  Google Scholar 

  26. Svanberg K (2007) Mma and gcmma-two methods for nonlinear optimization. 1:1–15

    Google Scholar 

  27. Babayo AA, Anisi MH, Ali I (2017) A review on energy management schemes in energy harvesting wireless sensor networks. Renew Sust Energ Rev 76:1176–1184

    Article  Google Scholar 

  28. Salazar R, Taylor G, Khalid M, Abdelkefi A (2018) Optimal design and energy harvesting performance of carangiform fish-like robotic system. Smart Mater Struct 27(7):075045

    Article  Google Scholar 

  29. Homayouni-Amlashi A, Mohand-Ousaid A, Rakotondrabe M (2020) Topology optimization of 2dof piezoelectric plate energy harvester under external in-plane force. J Micro-Bio Robot pp 1–13

  30. Homayouni-Amlashi A, Mohand-Ousaid A, Rakotondrabe M (2019) Multi directional piezoelectric plate energy harvesters designed by topology optimization algorithm. IEEE Robot Autom Lett

  31. Homayouni-Amlashi A, Mohand-Ousaid A, Rakotondrabe M (2020) Analytical modelling and optimization of a piezoelectric cantilever energy harvester with in-span attachment. Micromachines 11(6):591

    Article  Google Scholar 

  32. Wen S, Wu Z, Xu Q (2019) Design of a novel two-directional piezoelectric energy harvester with permanent magnets and multistage force amplifier. IEEE Trans Ultrason Ferroelectr Freq Control 67(4):840–849

    Article  Google Scholar 

  33. Wu Z, Xu Q (2020) Design and development of a novel two-directional energy harvester with single piezoelectric stack. IEEE Trans Ind Electron 68(2):1290–1298

    Article  MathSciNet  Google Scholar 

  34. Zheng B, Chang CJ, Gea HC (2009) Topology optimization of energy harvesting devices using piezoelectric materials. Struct Multidiscip Optim 38(1):17–23

    Article  Google Scholar 

  35. Schlinquer T, Mohand-Ousaid A, Rakotondrabe M (2018) In: IEEE ICRA, pp. 1–7

  36. Yang B, Cheng C, Wang X, Meng Z, Homayouni-Amlashi A (2022) Reliability-based topology optimization of piezoelectric smart structures with voltage uncertainty. J Intell Mater Syst Struct 33(15):1975–1989

    Article  Google Scholar 

  37. Homayouni-Amlashi A, Rakotondrabe M, Mohand-Ousaid A (2023) In: 2023 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 5426–5432

  38. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting (John Wiley & Sons)

  39. Huang X, Zuo Z, **e Y (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5–6):357–364

    Article  Google Scholar 

  40. Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  Google Scholar 

  41. Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    Article  Google Scholar 

  42. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  Google Scholar 

  43. Ferrari F, Sigmund O (2020) A new generation 99 line matlab code for compliance topology optimization and its extension to 3d. Struct Multidiscip Optim 62(4):2211–2228

    Article  MathSciNet  Google Scholar 

  44. Kim JE, Kim DS, Ma PS, Kim YY (2010) Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput Methods Appl Mech Eng 199(49–52):3153–3168

    Article  MathSciNet  Google Scholar 

  45. Sigmund O (2001) Design of multiphysics actuators using topology optimization-part ii: Two-material structures. Comput Methods Appl Mech Eng 190(49–50):6605–6627

  46. Li D, Kim IY (2018) Multi-material topology optimization for practical lightweight design. Struct Multidiscip Optim 58:1081–1094

    Article  MathSciNet  Google Scholar 

  47. Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line matlab implementation. Struct Multidiscip Optim 49:621–642

    Article  MathSciNet  Google Scholar 

  48. Molter A, Fonseca JSO, dos Santos Fernandez L (2016) Simultaneous topology optimization of structure and piezoelectric actuators distribution. Appl Math Model 40(9–10):5576–5588

    Article  MathSciNet  Google Scholar 

  49. He M, Zhang X, dos Santos Fernandez L, Molter A, **a L, Shi T (2021) Multi-material topology optimization of piezoelectric composite structures for energy harvesting. Compos Struct 265:113783

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by MultiOptim Chrysalide emergent project (UFC) and the Conseil Regional de Bourgogne Franche-Comte (France) Robocap project. It was also partially supported by the national CODE-TRACK project (ANR-17-CE05-0014-01), the Conseil Regional de Bourgogne Franche-Comté CONAFLU project and ANR OptoBot project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Homayouni-Amlashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MATLAB topology optimization code for piezoelectric energy harvesters with frequency tuning

MATLAB topology optimization code for piezoelectric energy harvesters with frequency tuning

figure i
figure j
figure k
figure l
figure m

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homayouni-Amlashi, A., Schlinquer, T., Kipkemoi, P. et al. Topology optimization of micro piezoelectric actuators and energy harvesters at femto-st institute: summary and MATLAB code implementation. J Micro-Bio Robot 20, 6 (2024). https://doi.org/10.1007/s12213-024-00168-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12213-024-00168-x

Keywords

Navigation