Log in

Magneto-rheological variable dam** and variable stiffness torsional vibration control of powertrain transmission

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Torsional vibration is prevalent in rotating mechanical systems such as powertrain transmission. It is a hot spot in current torsional vibration control research to effectively suppress torsional vibration of the system by implementing adaptive torsional dampers with adjustable parameters. The current research focuses on the variable dam** torsional vibration absorber, while the investigation on variable stiffness torsional vibration absorber remains at the theoretical stage. With this premise, a transmission system with a novel magneto-rheological variable stiffness and dam** torsional vibration absorber (MR-VSDTVB) is proposed. MR-VSDTVB with sequential adjustment of torsional dam** and stiffness parameters is developed. Its aggregate dynamic output characteristics of stiffness and dam** are tested. To describe the nonlinear output characteristics with coupled multiple control parameters of MR-VSDTVB and the subsequent control, a GA-BP neural network model and a hierarchical inverse model are adopted. To validate the feasibility of the transmission system with MR-VSDTVB, a dynamic model of the transmission system with MR-VSDTVB is constructed and simplified, and then the numerical simulation analysis and experimental tests are carried out. The output performances of the MR semi-active system with various traditional semi-active control strategies show that the transmission system with the proposed MR-VSDTVB can suppress torsional vibration effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C d :

Dam** coefficient of the linear MR damper

C s :

Dam** coefficient of the disc MR damper

f 1 :

Coulomb friction of the disc MR damper

C 1 :

Viscous dam** of the disc MR damper

f 2 :

Coulomb friction of the linear MR damper

C 2 :

Viscous dam** of the linear MR damper

K d1, K d2 :

Stiffness coefficient of spring

I c :

Current applied to the disc MR damper coil

I d :

Current applied to the linear MR damper coil

T e :

Excitation torque

J i :

Moment of inertia

K i :

Stiffness of the shaft

T d :

Controllable torque

T k, T c :

Controllable stiffness torque and dam** torque

T max :

Maximum output torque of MR-VSDTVB

T sky :

Output torque of skyhook controller

T slid :

Output torque of sliding mode controller

Θ 1 :

Deformation of the spring Kd1

Θ 1, Θ 2 :

Angular displacement of the primary flywheel and secondary flywheel

Θ 4 :

Angular displacement of the counterweight flywheel

μ :

Switching parameter

e :

Generalized error vector

K s :

Structural stiffness coefficients of MR-VSDTVB

References

  1. K. H. Lee, J. E. Park and Y. K. Kim, Design of a stiffness variable flexible coupling using magneto-rheological elastomer for torsional vibration reduction, Journal of Intelligent Material Systems and Structures, 30(15) (2019) 2212–2221.

    Article  Google Scholar 

  2. N. S. Akbar, E. N. Maraj, N. F. M. Noor and M. B. Habib, Exact solutions of an unsteady thermal conductive pressure driven peristaltic transport with temperature-dependent nanofluid viscosity, Case Studies in Thermal Engineering, 35 (2022) 1–11.

    Google Scholar 

  3. J. Akram, N. S. Akbar, M. Alansari and D. Tripathi, Electroosmotically modulated peristaltic propulsion of TiO2/10W40 nanofluid in curved microchannel, International Communications in Heat and Mass Transfer, 136 (2022) 106208.

    Article  Google Scholar 

  4. X. M. Dong, W. F. Li, J. Q. Yu, C. W. Pan, Y. Q. Zhou and X. H. Wang, Magneto-rheological variable stiffness and dam** torsional vibration control of powertrain system, Frontiers in Materials, 7 (2020) 1–16.

    Article  Google Scholar 

  5. E. N. Maraj, N. S. Akbar, Z. Iqbal and E. Azhar, Framing the MHD mixed convective performance of cnts in rotating vertical channel inspired by thermal deposition: closed-form solutions, Journal of Molecular Liquids, 233 (2017) 334–343.

    Article  Google Scholar 

  6. J. Akram, N. S. Akbar and D. Tripathi, Electroosmosis augmented MHD peristaltic transport of SWCNTs suspension in aqueous media, Journal of Thermal Analysis and Calorimetry, 147(3) (2022) 2509–2526.

    Article  Google Scholar 

  7. M. G. Johann, P. Hermann and S. Karsten, Innovative torsional vibration reduction devices - vehicle-related design and component strength analysis, SAE International Journal of Passenger Cars-Mechanical Systems, 7(4) (2014) 1392–1403.

    Article  Google Scholar 

  8. G. A. Pratt and M. M. Williamson, Series elastic actuators, International Conference on Intelligent Robotics and Systemes. IEEE Computer Society, Pittsburgh, PA, USA (1995) 399–406.

  9. K. M. Xu and T. Igusa, Dynamic characteristics of multiple substructures with closely spaced frequencies, Earthquake Engineering & Structural Dynamics, 21 (1992) 1059–1070.

    Article  Google Scholar 

  10. H. X. Sun, Y. F. Luo, X. Y. Wang and L. Zuo, Seismic control of a SDOF structure through electromagnetic resonant shunt tuned mass-damper-inerter and the exact H2 optimal solutions, Journal of Vibroengineering, 19(3) (2017) 2063–2079.

    Article  Google Scholar 

  11. X. M. Dong, M. Yu, C. R. Liao and W. M. Chen, Comparative research on semi-active control strategies for magneto-rheological suspension, Nonlinear Dynamic, 59(3) (2010) 433–453.

    Article  MATH  Google Scholar 

  12. J. E. Berno, M. K. Misgeld and L. Steffen, Multivariable friction compensation control for a variable stiffness actuator, Control Engineering Practice, 58 (2017) 298–306.

    Article  Google Scholar 

  13. W. Hu, Y. L. Gao and B. T. Yang, Semi-active vibration control of two flexible plates using an innovative joint mechanism, Mechanical Systems and Signal Processing, 130 (2019) 565–584.

    Article  Google Scholar 

  14. W. Hu, Y. L. Gao, X. Q. Sun, Y. K. Yang and B. T. Yang, Semi-active vibration control of a rotating flexible plate using stiffness and dam** actively tunable joint, Journal of Vibration and Control, 25(21–22) (2019) 2819–2833.

    Article  MathSciNet  Google Scholar 

  15. K. Williams, G. Chiu and R. Bernhard, Adaptive-passive absorbers using shape-memory alloys, Journal of Sound and Vibration, 249(5) (2002) 835–848.

    Article  Google Scholar 

  16. N. S. Akbar, Z. Iqbal, B. Ahmad and E. N. Maraj, Mechanistic investigation for shape factors analysis of SiO2 = MoS2-ethylene glycol inside a vertical channel influenced by oscillatory temperature gradient, Canadian Journal of Physics, 97(9) (2019) 950–958.

    Article  Google Scholar 

  17. M. B. Habib and N. S. Akbar, New trends of nanofluids to combat Staphylococcus aureus in clinical isolates, Journal of Thermal Analysis and Calorimetry, 143 (2021) 1893–1899.

    Article  Google Scholar 

  18. J. Q. Yu, X. M. Dong, X. H. Wang, J. L. Li and B. Li, Design, modeling, and control of a magnetorheological rotary damper for scissor seat suspension, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(9) (2020) 2402–2416.

    Google Scholar 

  19. G. L. Hu, L. F. Wu, L. S. Lin and L. F. Yu, Performance analysis of rotary magnetorheological brake with multiple fluid flow channels, IEEE Access, 8 (2020) 173323–173335.

    Article  Google Scholar 

  20. X. M. Dong, C. Duan and J. Q. Yu, Axial squeeze strengthen effect on rotary magneto-rheological damper, Smart Materials and Structures, 26(5) (2017) 055022.

    Article  Google Scholar 

  21. E. Abouobaia, R. Bhat and R. Sedaghati, Semi-active control of torsional vibrations using a new hybrid torsional damper, European Journal of Pharmacology, 19(2) (2013) 191–198.

    Google Scholar 

  22. L. B. Tian, S. B. Cai, G. J. Bao and Q. H. Yang, Design and kinematic modeling study of magnetorheological fluid flexure joints, Electrical and Mechanical Engineering, 34(5) (2017) 432–437.

    Google Scholar 

  23. E. N. Maraj, I. Zehra and N. S. Akbar, Rotatory flow of MHD (MoS2-SiO2)/H2O hybrid nanofluid in a vertical channel owing to velocity slip and thermal periodic conditions, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 639 (2022) 128383.

    Google Scholar 

  24. X. M. Dong, J. **, P. G. Chen and W. F. Li, Magnetorheological variable inertia flywheel, Smart Materials and Structures, 27(11) (2018) 115015.

    Article  Google Scholar 

  25. X. Deng, X. M. Dong, J. **, W. F. Li and J. **, A grey hysteresis model of magnetorheological damper, Journal of Intelligent Material Systems and Structures, 33(11) (2022) 1423–1438.

    Article  Google Scholar 

  26. X. M. Dong, M. Yu, C. R. Liao and W. M. Ye, Comparative research on semi-active control strategies for magnetorheological suspension, Nonlinear Dynamics, 59 (2010) 433–453.

    Article  Google Scholar 

  27. M. Ahmadian, A hybrid semi-active control for secondary suspension applications, ASME International Congress and Exposition, 11 (1997) 16–21.

    Google Scholar 

  28. C. N. Liu, L. Chen, X. F. Yang, X. L. Zhang and Y. Yang, General theory of skyhook control and its application to semi-active suspension control strategy design, IEEE Access, 7 (2019) 101552–101560.

    Article  Google Scholar 

  29. M. F. Zhu, G. Lv, C. P. Zhang, J. M. Jiang and H. R. Wang, Delay-dependent sliding mode variable structure control of vehicle magneto-rheological semi-active suspension, IEEE Access, 10 (2022) 51128–51141.

    Article  Google Scholar 

  30. O. Sahin, N. G. Adar, M. Kemerli, N. Caglar, I. Sahin, Z. Parlak, K. Kukrek and T. Engin, A comparative evaluation of semi-active control algorithms for real-time seismic protection of buildings via magnetorheological fluid dampers, Journal of Building Engineering, 42 (2021) 1–11.

    Article  Google Scholar 

Download references

Acknowledgments

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was financially supported by the Key Scientific Research Projects of Henan Higher Education Institutions (No.23B410004) and the National Natural Science Foundation of People’s Republic of China (Project NO. 52075056). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Li.

Additional information

Wenfeng Li is a Lecturer at the School of Electrical and Mechanical Engineering, Xuchang University, China. He received his Ph.D. in Mechanical Engineering from Chongqing University in 2021, supervised by Professor **%20and%20variable%20stiffness%20torsional%20vibration%20control%20of%20powertrain%20transmission&author=Wenfeng%20Li%20et%20al&contentID=10.1007%2Fs12206-023-0705-1&copyright=The%20Korean%20Society%20of%20Mechanical%20Engineers%20and%20Springer-Verlag%20GmbH%20Germany%2C%20part%20of%20Springer%20Nature&publication=1738-494X&publicationDate=2023-08-02&publisherName=SpringerNature&orderBeanReset=true">Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Ge, X., Liang, M. et al. Magneto-rheological variable dam** and variable stiffness torsional vibration control of powertrain transmission. J Mech Sci Technol 37, 3887–3900 (2023). https://doi.org/10.1007/s12206-023-0705-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-0705-1

Keywords

Navigation