Log in

Numerical study on crack propagation in functionally graded CNT-reinforced composite plates

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents a numerical method for simulating the crack propagation in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. The numerical method is based on 2-D natural element method (NEM) which can overcome the inherent demerits of FEM and conventional meshfree methods. The 3-D displacement field of cracked orthotropic plate is formulated using the (1, 1, 0)* hierarchical model and approximated by 2-D NEM. The thickness-wise mixed-mode stress intensity factors (SIFs) are computed using the modified interaction integral I(1,2) and the 2-D complex-valued crack-tip singular fields. The crack propagation angle is determined by the modified maximum circumferential stress (MCS) criterion, and the crack trajectories are predicted by an incremental crack propagation simulation scheme. The present numerical method is verified from the comparison of predicted crack trajectories with the published reference solutions. Moreover, using the developed numerical method, the crack trajectory characteristics of FG-CNTRC plates are parametrically investigated with respect to the major parameters. From the parametric investigation, it is found that the crack trajectories of FG-CNTRC are significantly influenced by the material orientation angle and the stiffness ratio. But, the effects of the initial crack angle and the volume fraction and volume fraction pattern of CNTs are not remarkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Liew, Z. X. Lei and L. W. Zhang, Mechanical analysis of functionally graded carbon nanotube reinforced composite: a review, Compos. Struct., 120 (2015) 90–97.

    Article  Google Scholar 

  2. A. M. K. Esawi and M. M. Farag, Carbon nanotube reinforced composites: potential and current challenges, Mater. Des., 28 (2007) 2394–2401.

    Article  Google Scholar 

  3. Z. X. Wang and H. S. Shen, Nonlinear vibration of nanotube-reinforced composite plates in thermal environments, Comput. Mater. Sci., 50 (2011) 2319–2330.

    Article  Google Scholar 

  4. P. M. Ajayan, O. Stephane, C. Collix and D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science, 256 (1994) 1212–1214.

    Article  Google Scholar 

  5. N. Hu, H. Fugunaga, C. Lu, M. Kameyama and B. Yan, Prediction of elastic properties of carbon nanotube reinforced composites, Proc. Royal Soc. A, 461 (2005) 1685–1670.

    Article  Google Scholar 

  6. Y. Han and J. Elliott, Molecular dynamics simulations of the elastic properties of polymer/carbon nanobute composites, Comput. Mater. Sci., 39 (2007) 315–323.

    Article  Google Scholar 

  7. J. Wuite and S. Adali, Deflection and stress behavior of nano-composite reinforced beams using a multiscale analysis, Compos. Struct., 71 (2005) 388–396.

    Article  Google Scholar 

  8. G. Formica, W. Lacarbonara and R. Alessi, Vibrations of carbon nanotube-reinforced composites, J. Sound Vib., 329 (2010) 1875–1889.

    Article  Google Scholar 

  9. A. Arani, S. Maghamikia, M. Mohammadimehr and A. Arefmanesh, Buckling analysis of laminated composite rectangular plates reinforced by SWCNTS using analytical and finite element methods, J. Mech. Sci. Technol., 25 (2011) 809–820.

    Article  Google Scholar 

  10. G. D. Seidel and D. C. Lagoudas, Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites, Mech. Mater., 38(8–10) (2006) 884–907.

    Article  Google Scholar 

  11. S. Qian, E. C. Dickey, R. Andrews and T. Rantell, Load transfer and deformation mechanism in carbon nanotube-polystyrene composites, Appl. Phys. Lett., 76 (2000) 2868.

    Article  Google Scholar 

  12. J. R. Cho and J. T. Oden, A priori modeling error estimates of hierarchical models for elasticity problems for plate- and shelllike structures, Mathl. Comput. Modelling, 23(10) (1996) 117–133.

    Article  MATH  Google Scholar 

  13. H. S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., 19 (2009) 9–19.

    Article  Google Scholar 

  14. L. L. Ke, J. Yang and S. Kitipornchai, Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Compos. Struct., 92 (2010) 676–683.

    Article  Google Scholar 

  15. V. N. Van Do and C. H. Lee, Bending analyses of FG-CNTRC plates using the modified mesh-free radial point interpolation method based on the higher-order shear deformation theory, Compos. Struct., 168 (2017) 485–497.

    Article  Google Scholar 

  16. M. Mirzaei and Y. Kiani, Nonlinear free vibration of FG-CNT reinforced composite plates, Struct. Eng. Mech., 64(3) (2017) 381–390.

    Google Scholar 

  17. J. R. Cho, Natural element approximation of hierarchical models of plate-like elastic structures, Finite Elem. Anal. Des., 180 (2020) 103439.

    Article  MathSciNet  Google Scholar 

  18. J. R. Cho and H. W. Lee, A Petrov-Galerkin natural element method securing the numerical integration accuracy, J. Mech. Sci. Technol., 20(1) (2006) 94–109.

    Article  Google Scholar 

  19. S. S. Chen, C. J. Xu, G. S. Tong and X. Wei, Free vibration of moderately thick functionally graded plates by a meshless local natural neighbor interpolation method, Eng. Anal. Boundary Elem., 61 (2015) 114–126.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Chinesta, C. Cescotto, E. Cueto and P. Lorong, Natural Element Method for Simulation of Structures and Processes, Wiley (2013).

  21. S. S. Chen, Q. H. Li, Y. H. Liu and Z. Q. Xue, A meshless local natural neighbor interpolation method for analysis of two-dimensional piezoelectric structures, Eng. Anal. Boundary Elem., 37 (2013) 273–279.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. S. Chen, C. J. Xu and G. S. Tong, A meshless local natural neighbor interpolation method to modeling of functionally graded viscoelastic materials, Eng. Anal. Boundary Elem., 52 (2015) 92–98.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. T. Corten, Fracture mechanics of composites, H. Leibowitz (editor), Fracture-An Advanced Treatise, VII, Academic Press, New York (1968).

    Google Scholar 

  24. Q. Z. **ao, B. L. Karihaloo and F. W. Williams, Application of penalty-equilibrium hybrid stress element method to crack problems, Eng. Fract. Mech., 63 (1999) 1–22.

    Article  Google Scholar 

  25. J. R. Cho and J. T. Oden, Functionally graded material: a parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme, Comput. Meth. Appl. Mech. Engrg., 188 (2000) 17–38.

    Article  MATH  Google Scholar 

  26. S. H. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., 19 (2009) 9–19.

    Article  Google Scholar 

  27. M. Wong, M. Paramsothy, X. J. Xu, Y. Ren, S. Li and K. Liao, Physical interactions at carbon-nanotube-polymer interface, Polymer, 44 (2003) 7757–7764.

    Article  Google Scholar 

  28. N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engng., 46 (1999) 131–150.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. R. Cho, A numerical evaluation of SIFs of 2-D functionally graded materials by enriched natural element method, Appl. Sci., 9 (2019) 3581.

    Article  Google Scholar 

  30. G. C. Sih and E. P. Chen, Cracks in Composite Materials, Martinus Nijhoff, The Netherlands (1981).

    Book  Google Scholar 

  31. M. Doblare, F. Espiga, L. Garcia and M. Alcantud, Study of crack propagation in orthotropic materials by using the boundary element method, Eng. Fract. Mech., 37(5) (1990) 953–967.

    Article  Google Scholar 

  32. J. Gu, T. Yu, L. V. Lich, S. Tanaka, H. Yuan and T. Q. Bui, Crack growth adaptive XIGA simulation in isotropic and orthotropic materials, Comput. Meth. Appl. Mech. Engrg., 365 (2020) 113016.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Piva and E. Viola, Crack propagation in an orthotropic medium, Eng. Fract. Mech., 29 (1988) 535–548.

    Article  Google Scholar 

  34. V. E. Saouma, M. L. Ayari and D. A. Leavell, Mixed mode crack propagation in homogenous anisotropic solids, Eng. Fract. Mech., 27 (1987) 171–184.

    Article  Google Scholar 

  35. L. M. A. Cahill, S. Natarajan, S. P. A. Bordas, R. M. O’Higgins and C. T. McCathy, An experimental/numerical investigation into the main driving force for crack propagation in unidirectional fibre-reinforced composite laminae, Compos. Struct., 107 (2014) 119–130.

    Article  Google Scholar 

  36. J. R. Cho, Level-wise strain recovery and error estimation for natural element hierarchical plate models, Int. J. Numer. Methods Engng., 122(12) (2020) 3120–3136.

    Article  MathSciNet  Google Scholar 

  37. N. Moes, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engng., 46(1) (1999) 131–150.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C1100924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **-Rae Cho.

Additional information

**-Rae Cho received his B.S. degree in Aeronautical Engineering from Seoul National University in 1983. He then received his M.S. and Ph.D. degrees from The University of Texas at Austin in 1993 and 1995, respectively. He is currently a Professor at the Department of Naval Architecture and Ocean Engineering in Hongik University. His major research field is the computational mechanics in solid/structural mechanics, materials science and ocean engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, JR. Numerical study on crack propagation in functionally graded CNT-reinforced composite plates. J Mech Sci Technol 36, 5679–5688 (2022). https://doi.org/10.1007/s12206-022-1030-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-022-1030-9

Keywords

Navigation