Log in

Simulation-Based Novel Hybrid Proportional Derivative/H-Infinity Controller Design for Improved Trajectory Tracking of a Two-Link Robot Arm

基于仿真的新型比例导数/H混合控制器用于改进双连杆机械臂轨迹跟踪

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

A hybrid control strategy integrating proportional derivative (PD) and the H-infinity control methodology is proposed for a serial two-link robotic manipulator with the goal of improving the tracking performance of the robot arm. The H-infinity controller has the ability to achieve a high performance and robustness in the presence of disturbances and uncertainties, while the PD controller is effective in stabilizing the manipulator. Simulation results using Matlab and Simulink show that the proposed hybrid controller, which integrates the advantages of both PD and H-infinity controllers, has the lowest rise time for the second link, the lowest settling time for the two links, the lowest peak time for both links, and the fastest decay of the error response. In addition, the hybrid control scheme also has the lowest mean square error value, with a 53.3% improvement over the H-infinity controller and a 91.8% improvement over the PD controller, indicating an improved trajectory tracking performance when compared with pure PD and pure H-infinity controllers, respectively. It was also found that the hybrid controller has the lowest integral absolute error, integral square error, integral time absolute error, and integral time square error for the second link, while the error values for the first link are satisfactory, showing a superior performance of the hybrid controller above the PD and H-infinity controllers, respectively.

摘要

为提高串联双连杆机器人手臂的跟踪性能, 提出了一种将比例导数(PD)和H控制方法相结合的混合控制策略。H控制器能够在存在干扰和不确定性的情况下实现高性能和鲁棒性, 而PD控制器在稳定机械臂方面是有效的。Matlab 和Simulink 仿真结果表明, 该混合控制器综合了PD 控制器和H控制器的优点, 具有在第二连杆上升时间最短、两连杆稳定时间最短、两连杆峰值时间最短、误差响应衰减最快的特点。此外, 混合控制方案的均方误差值也最低, 比H控制器提高了53.3%, 比PD 控制器提高了91.8%, 表明了与纯PD 和纯H控制器相比, 混合控制方案的轨迹跟踪性能有所提高。第二连杆的积分绝对误差、积分**方误差、积分时间绝对误差和积分时间**方误差最小, 而第一连杆的误差值令人满意, 表明混合控制器的性能分别优于PD 和H控制器。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALANDOLI E A, LEE T S. A critical review of control techniques for flexible and rigid link manipulators [J]. Robotica, 2020, 38(12): 2239–2265.

    Article  Google Scholar 

  2. MAHBOUB B, STEPHEN D. A two-link robot manipulator: Simulation and control design [J]. International Journal of Robotic Engineering, 2020, 5(2): 1–17.

    Article  Google Scholar 

  3. MOBERG S. Modelling and control of flexible manipulators [D]. Linko**: Linko** University, 2010.

    Google Scholar 

  4. MOHARAM A, EL-HOSSEINI M A, ALI H A. Design of optimal PID controller using NSGA-II algorithm and level diagram [J]. Studies in Informatics and Control, 2015, 24(3): 301–308.

    Article  Google Scholar 

  5. ULLAH M I, ALI AJWAD S, IRFAN M, et al. Nonlinear control law for articulated serial manipulators: Simulation augmented with hardware implementation [J]. Elektronika Ir Elektrotechnika, 2016, 22(1): 3–7.

    Article  Google Scholar 

  6. AJWAD, ULLAH, BAIZID, et al. A comprehensive state-of-the-art on control of industrial articulated robots [J]. Journal of the Balkan Tribological Association, 2014, 20(4): 499–521.

    Google Scholar 

  7. TRUNG T V, IWASAKI M. Fast and precise positioning with coupling torque compensation for a flexible lightweight two-link manipulator with elastic joints [J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 1025–1036.

    Article  Google Scholar 

  8. KHEMAISSIA S, SOUFI Y. A biologically inspired adaptive model theory for humanoid robot arm control [C]//2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering. Sabratha: IEEE, 2022: 193–198.

    Google Scholar 

  9. NGUYEN T T. Sliding mode control-based system for the two-link robot arm [J]. International Journal of Electrical and Computer Engineering (IJECE), 2019, 9(4): 2771.

    Article  Google Scholar 

  10. NGUYEN T T. Fractional-order sliding mode controller for the two-link robot arm [J]. International Journal of Electrical and Computer Engineering (IJECE), 2020, 10(6): 5579.

    Article  Google Scholar 

  11. BETTEGA J, RICHIEDEI D. Trajectory tracking in an underactuated, non-minimum phase two-link multibody system through model predictive control with embedded reference dynamics [J]. Mechanism and Machine Theory, 2023, 180: 105165.

    Article  Google Scholar 

  12. KRÄMER M, RÖSMANN C, HOFFMANN F, et al. Model predictive control of a collaborative manipulator considering dynamic obstacles [J]. Optimal Control Applications and Methods, 2020, 41(4): 1211–1232.

    Article  MathSciNet  MATH  Google Scholar 

  13. KUO Y L, PONGPANYAPORN P. Continuous-time nonlinear model predictive tracking control with input constraints using feedback linearization [J]. Applied Sciences, 2022, 12(10): 5016.

    Article  Google Scholar 

  14. BOUZOUALEGH S, GUECHI E H, ZENNIR Y. Model predictive control of a three degrees of freedom manipulator robot [C]//2019 International Conference on Advanced Systems and Emergent Technologies. Hammamet: IEEE, 2019: 84–89.

    Google Scholar 

  15. Ezkeziyaw A. Model predictive controller design for seed sowing row planting agricultural robot [D]. Ethiopia: Bahir Dar Institute of Technology, 2022.

    Google Scholar 

  16. KASHYAP P. A literature review on H neural network adaptive control [M]//Proceedings of second doctoral symposium on computational intelligence. Singapore: Springer, 2022: 341–354.

    Google Scholar 

  17. ULLAH M I, ALI AJWAD S, IRFAN M, et al. MPC and H-infinity based feedback control of non-linear robotic manipulator [C]//2016 International Conference on Frontiers of Information Technology. Islamabad: IEEE, 2016: 136–141.

    Google Scholar 

  18. TOKHI M O, AZAD A M. Control of flexible manipulator systems [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 1996, 210(2): 113–130.

    Google Scholar 

  19. CHEONG J, CHUNG W K, YOUM Y. PID composite controller and its tuning for flexible link robots [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne: IEEE, 2002: 2122–2127.

    Google Scholar 

  20. AHMAD M A, MOHAMED Z, ISMAIL Z H. Hybrid input sha** and PID control of a flexible robot manipulator [J]. Journal of the Institution of Engineers, 2009, 72(3): 56–62.

    Google Scholar 

  21. MOHAMED Z, AHMAD M A. Hybrid input sha** and feedback control schemes of a flexible robot manipulator [J]. IFAC Proceedings Volumes, 2008, 41(2): 11714–11719.

    Article  Google Scholar 

  22. YANG H J, TAN M. Sliding mode control for flexible-link manipulators based on adaptive neural networks [J]. International Journal of Automation and Computing, 2018, 15(2): 239–248.

    Article  Google Scholar 

  23. ZHANG L, LIU S. Iterative learning control for flexible manipulator using Fourier basis function [J]. International Journal of Automation and Computing, 2015, 12(6): 639–647.

    Article  Google Scholar 

  24. KHARABIAN B, MIRINEJAD H. Hybrid sliding mode/H-infinity control approach for uncertain flexible manipulators [J]. IEEE Access, 2020, 8: 170452–170460.

    Article  Google Scholar 

  25. JEONG D Y, KANG T, DHARMAYANDA H R, et al. H-infinity attitude control system design for a small-scale autonomous helicopter with nonlinear dynamics and uncertainties [J]. Journal of Aerospace Engineering, 2012, 25(4): 501–518.

    Article  Google Scholar 

  26. MCFARLANE D, GLOVER K. A loop-sha** design procedure using H/sub infinity/synthesis [J]. IEEE Transactions on Automatic Control, 1992, 37(6): 759–769.

    Article  MathSciNet  MATH  Google Scholar 

  27. WHIDBORNE J F, PANGALOS P, ZWEIRI Y H, et al. A graphical user interface for computer-aided robust control system design [C]//Engineering Design Conference. London: King’s College, 2002: 383–392.

    Google Scholar 

  28. HUANG Y J. Variable structure control for a two-link robot arm [J]. Electrical Engineering, 2003, 85(4): 195–204.

    Article  MathSciNet  Google Scholar 

  29. SPONG M W, HUTCHINSON S, VIDYASAGAR M. Robot modeling and control [M]. 2nd ed. Chichester: John Wiley & Sons, 2020: 200–203.

    Google Scholar 

  30. SORIANO L A, ZAMORA E, VAZQUEZ-NICOLAS J M, et al. PD control compensation based on a cascade neural network applied to a robot manipulator [J]. Frontiers in Neurorobotics, 2020, 14: 577749.

    Article  Google Scholar 

  31. TAKEGAKI M, ARIMOTO S. A new feedback method for dynamic control of manipulators [J]. Journal of Dynamic Systems, Measurement, and Control, 1981, 103(2): 119–125.

    Article  MATH  Google Scholar 

  32. KELLY R. PD control with desired gravity compensation of robotic manipulators [J]. The International Journal of Robotics Research, 1997, 16(5): 660–672.

    Article  Google Scholar 

  33. TOMEI P. A simple PD controller for robots with elastic joints [J]. IEEE Transactions on Automatic Control, 1991, 36(10): 1208–1213.

    Article  MathSciNet  Google Scholar 

  34. CORKE P. Robotics and control: Fundamental algorithms in MATLAB® [M]. Cham: Springer, 2022.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adesola Temitope Bankole.

Ethics declarations

Conflict of Interest The authors were both involved in the ideation, planning, and simulation of this study. No other journal has requested this work, nor is it being reviewed elsewhere. The writers are not connected to any companies that have a direct or indirect financial stake in the topics covered in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankole, A.T., Igbonoba, E.E.C. Simulation-Based Novel Hybrid Proportional Derivative/H-Infinity Controller Design for Improved Trajectory Tracking of a Two-Link Robot Arm. J. Shanghai Jiaotong Univ. (Sci.) (2023). https://doi.org/10.1007/s12204-023-2660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12204-023-2660-5

Key words

CLC number

Document code

关键词

Navigation