Log in

Multi-Channel Based on Attention Network for Infrared Small Target Detection

基于注意力的多通道网络红外弱小目标检测

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Infrared detection technology has the advantages of all-weather detection and good concealment, which is widely used in long-distance target detection and tracking systems. However, the complex background, the strong noise, and the characteristics of small scale and weak intensity of targets bring great difficulties to the detection of infrared small targets. A multi-channel based on attention network is proposed in this paper, aimed at the problem of high missed detection rate and false alarm rate of traditional algorithms and the problem of large model, high complexity and poor detection performance of deep learning algorithms. First, given the difficulty in extracting the features of infrared multiscale and small dim targets, the multiple channels are designed based on dilated convolution to capture multiscale target features. Second, the coordinate attention block is incorporated in each channel to suppress background clutters adaptively and enhance target features. In addition, the fusion of shallow detail features and deep abstract semantic features is realized by synthesizing the contextual attention fusion block. Finally, it is verified that, compared with other state-of-the-art methods based on the datasets SIRST and MDFA, the proposed algorithm further improves the detection effect, and the model size and computational complexity are smaller.

摘要

红外探测技术具有全天候检测、隐蔽性好的优点, 被广泛应用在远距离目标探测与跟踪系统 中, 而复杂的背景、**烈的噪音以及目标尺寸小、**度弱的特性给红外弱小目标检测任务带来了很 大的困难。针对传统算法漏检率与虚警率高以及深度学**算法模型大、复杂度高、检测性能有待改 善的问题, 我们提出了基于注意力的多通道网络检测算法。首先, 考虑到多尺度红外弱小目标的特 征提取困难, 我们设计了基于膨胀卷积的多通道网络来捕获多尺度的目标特征。其次, 通过在各通 道中嵌入坐标注意力模块自适应地抑制背景杂波并增**目标特征。此外, 通过上下文注意力结构实 现浅层细节特征和深层抽象语义特征的融合。最后, 基于SIRST和MDFA数据集与各先进检测算法进 行对比, 验证了本文提出的算法能够进一步改善检测性能, 同时模型的参数量和计算复杂度更小。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN M S, SUN W X, LI M Y, et al. Infrared small target detection under various complex backgrounds [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2288–2294 (in Chinese).

    Google Scholar 

  2. ZHANG Y, JIA Z Y, ZHOU G R, et al. Infrared dim target detection based on multi-directional mixed template [J]. Air & Space Defense, 2019, 2(1): 64–69 (in Chinese).

    Google Scholar 

  3. YANG J, YANG J, WANG F L. An improved algorithm for multiple infrared targets tracking [J]. Journal of Shanghai Jiao Tong University, 2009, 43(3): 437–442 (in Chinese).

    Google Scholar 

  4. YANG Q L, ZHOU B H, ZHENG W, et al. Small infrared target detection based on fully convolutional network [J]. Infrared Technology, 2021, 43(4): 349–356 (in Chinese).

    Google Scholar 

  5. LIU J M, MENG W H. Infrared small target detection based on fully convolutional neural network and visual saliency [J]. Acta Photonica Sinica, 2020, 49(7): 46–56 (in Chinese).

    Google Scholar 

  6. DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-Median filters for detection of small targets [C]//SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Denver: SPIE, 1999: 74–83.

    Google Scholar 

  7. BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection [J]. Pattern Recognition, 2010, 43(6): 2145–2156.

    Article  Google Scholar 

  8. WANG B, DONG L L, ZHAO M, et al. Texture orientation-based algorithm for detecting infrared maritime targets [J]. Applied Optics, 2015, 54(15): 4689–4697.

    Article  Google Scholar 

  9. CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574–581.

    Article  Google Scholar 

  10. HAN JH, MA Y, ZHOU B, etal. Arobustinfrared small target detection algorithm based on human visual system [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2168–2172.

    Article  Google Scholar 

  11. XIA C Q, LI X R, ZHAO L Y, et al. Infrared small target detection based on multiscale local contrast measure using local energy factor [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1): 157–161.

    Article  Google Scholar 

  12. CHEN Y H, ZHANG G P, MA Y J, et al. Small infrared target detection based on fast adaptive masking and scaling with iterative segmentation [J]. IEEE Geo-science and Remote Sensing Letters, 2022, 19:1–5.

    Google Scholar 

  13. WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection [J]. Pattern Recognition, 2016, 58: 216–226.

    Article  Google Scholar 

  14. NIE J Y, QU S C, WEI Y T, et al. An infrared small target detection method based on multiscale local homogeneity measure [J]. Infrared Physics & Technology, 2018, 90: 186–194.

    Article  Google Scholar 

  15. HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612–616.

    Article  Google Scholar 

  16. LIU J, HE Z Q, CHEN Z L, et al. Tiny and dim infrared target detection based on weighted local contrast [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1780–1784.

    Article  Google Scholar 

  17. HAN J H, MORADI S, FARAMARZI I, et al. A local contrast method for infrared small-target detection utilizing a tri-layer window [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1822–1826.

    Article  Google Scholar 

  18. GAO C Q, MENG D Y, YANG Y, et al. Infrared patchimage model for small target detection in a single image [J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996–5009.

    Article  MathSciNet  Google Scholar 

  19. ZHANG T F, WU H, LIU Y H, et al. Infrared small target detection based on non-convex optimization with lp-norm constraint [J]. Remote Sensing, 2019, 11(5): 559.

    Article  Google Scholar 

  20. YANG P, DONG L L, XU W H. Infrared small maritime target detection based on integrated target saliency measure [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2369–2386.

    Article  Google Scholar 

  21. DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection [C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 949–958.

    Google Scholar 

  22. DAI Y M, WU Y Q, ZHOU F, etal. Attentionallocal contrast networks for infrared small target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813–9824.

    Article  Google Scholar 

  23. LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection [J]. IEEE Transactions on Image Processing, 2022. https://doi.org/10.1109/TIP.2022.3199107

  24. SHI M S, WANG H Infrared dim and small target detection based on denoising autoencoder network [J]. Mobile Networks and Applications, 2020, 25(4): 1469–1483.

    Article  MathSciNet  Google Scholar 

  25. DU JM, LU HZ, HU M F, et al. CNN-basedinfrared dim small target detection algorithm using target-oriented shallow-deep features and effective small anchor [J]. IET Image Processing, 2021, 15(1): 1–15.

    Article  Google Scholar 

  26. ZHAO B, WANG CP, FU Q, et al. A novel pattern for infrared small target detection with generative adversarial network [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4481–4492.

    Article  Google Scholar 

  27. ZHANG Y, LIU S J, LI C L, et al. Application of deep learning method on ischemic stroke lesion segmentation [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(1): 99–111.

    Google Scholar 

  28. HE K M, ZHANG X Y, REN S Q, etal. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.

    Google Scholar 

  29. CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [DB/OL]. (2017-06-17). https://arxiv.org/abs/1706.05587

  30. XU J C, HE S M, YU D D, et al. Automatic segmentation method for cone-beam computed tomography image of the bone graft region within maxillary sinus based on the atrous spatial pyramid convolution network [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(3): 298–305.

    Google Scholar 

  31. GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey [J]. Computational Visual Media, 2022, 8: 331–368.

    Article  Google Scholar 

  32. HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.

    Google Scholar 

  33. GAO Z L, XIE J T, WANG Q L, et al. Global second-order pooling convolutional networks [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3019–3028.

    Google Scholar 

  34. WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531–11539.

    Google Scholar 

  35. LEE H, KIM H E, NAM H. SRM: A style-based re-calibration module for convolutional neural networks [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1854–1862.

    Google Scholar 

  36. JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [C]//29th International Conference on Neural Information Processing Systems. Montréal: NIPS, 2015: 1–9.

    Google Scholar 

  37. HU J, SHEN L, ALBANIE S, et al. Gather-excite: Exploiting feature context in convolutional neural networks [C]//32nd Conference on Neural Information Processing Systems. Montréal: NIPS, 2018: 1–11.

    Google Scholar 

  38. WANG X L, GIRSHICK R, GUPTA A, et al. Nonlocal neural networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794–7803.

    Google Scholar 

  39. HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708–13717.

    Google Scholar 

  40. WANG H, ZHOU L P, WANG L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8508–8517.

    Google Scholar 

  41. ZHANG H, ZHANG L, YUAN D, et al. Infrared small target detection based on local intensity and gradient properties [J]. Infrared Physics & Technology, 2018, 89: 88–96.

    Article  Google Scholar 

  42. AGHAZIYARATI S, MORADI S, TALEBI H. Small infrared target detection using absolute average difference weighted by cumulative directional derivatives [J]. Infrared Physics & Technology, 2019, 101: 78–87.

    Article  Google Scholar 

  43. WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [M]//European conference on computer vision. Cham: Springer, 2018: 3–19.

    Google Scholar 

  44. MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: Convolutional triplet attention module [C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 3138–3147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunze Cai  (蔡云泽).

Additional information

Foundation item: the Industry-University-Research Cooperation Fund Project of the Eighth Research Institute of China Aerospace Science and Technology Corporation (No. USCAST2021-5), the Major Scientific Instrument Research of National Natural Science Foundation of China (No. 61627810), the National Science and Technology Major Program of China (No. 2018YFB1305003), and the National Defense Science and Technology Outstanding Youth Science Foundation (No. 2017-JCJQ-ZQ-031)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, B. & Cai, Y. Multi-Channel Based on Attention Network for Infrared Small Target Detection. J. Shanghai Jiaotong Univ. (Sci.) 29, 414–427 (2024). https://doi.org/10.1007/s12204-023-2616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-023-2616-9

Key words

关键词

CLC number

Document code

Navigation