Log in

Tumor-Targeting Extracellular Vesicles Loaded with siS100A4 for Suppressing Postoperative Breast Cancer Metastasis

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

S100A4 promotes the establishment of tumor microenvironment for malignant cancer cells, and knockdown of S100A4 can inhibit tumorigenesis. However, there is no efficient way to target S100A4 in metastatic tumor tissues. Here, we investigated the role of siS100A4-loaded iRGD-modified extracellular vesicles (siS100A4-iRGD-EVs) in postoperative breast cancer metastasis.

Methods

siS100A4-iRGD-EVs nanoparticles were engineered and analyzed using TEM and DLS. siRNA protection, cellular uptake, and cytotoxicity of EV nanoparticles were examined in vitro. Postoperative lung metastasis mouse model was created to investigate the tissue distribution and anti-metastasis roles of nanoparticles in vivo.

Results

siS100A4-iRGD-EVs protected siRNA from RNase degradation, enhanced the cellular uptake and compatibility in vitro. Strikingly, iRGD-modified EVs significantly increased tumor organotropism and siRNA accumulation in lung PMNs compared to siS100A4-EVs in vivo. Moreover, siS100A4-iRGD-EVs treatment remarkedly attenuated lung metastases from breast cancer and increased survival rate of mice through suppressing S100A4 expression in lung.

Conclusions

siS100A4-iRGD-EVs nanoparticles show more potent anti-metastasis effect in postoperative breast cancer metastasis mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abdelfattah, N., P. Kumar, C. Wang, J. S. Leu, W. F. Flynn, R. Gao, D. S. Baskin, K. Pichumani, O. B. Ijare, S. L. Wood, S. Z. Powell, D. L. Haviland, B. C. Parker Kerrigan, F. F. Lang, S. S. Prabhu, K. M. Huntoon, W. Jiang, B. Y. S. Kim, J. George, and K. Yun. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat. Commun. 13(1):767, 2022.

    Article  Google Scholar 

  2. Ambartsumian, N., J. Klingelhofer, and M. Grigorian. The multifaceted S100A4 protein in cancer and inflammation. Methods Mol. Biol. 339–365:2019, 1929.

    Google Scholar 

  3. Bergin, A. R. T., and S. Loi. Triple-negative breast cancer: recent treatment advances. F1000Res. 2019. https://doi.org/10.12688/f1000research.18888.1.

    Article  Google Scholar 

  4. Bian, Y., J. Guo, L. Qiao, and X. Sun. miR-3189-3p mimics enhance the effects of S100A4 siRNA on the inhibition of proliferation and migration of gastric cancer cells by targeting CFL2. Int. J. Mol. Sci. 19(1):236, 2018.

    Article  Google Scholar 

  5. Bianchini, G., J. M. Balko, I. A. Mayer, M. E. Sanders, and L. Gianni. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 13(11):674–690, 2016.

    Article  Google Scholar 

  6. Chen, B. Y., C. W. Sung, C. Chen, C. M. Cheng, D. P. Lin, C. T. Huang, and M. Y. Hsu. Advances in exosomes technology. Clin. Chim. Acta. 493:14–19, 2019.

    Article  Google Scholar 

  7. Chulpanova, D. S., K. V. Kitaeva, V. James, A. A. Rizvanov, and V. V. Solovyeva. Therapeutic prospects of extracellular vesicles in cancer treatment. Front. Immunol. 9:1534, 2018.

    Article  Google Scholar 

  8. D’Abreo, N., and S. Adams. Immune-checkpoint inhibition for metastatic triple-negative breast cancer: safety first? Nat. Rev. Clin. Oncol. 16(7):399–400, 2019.

    Article  Google Scholar 

  9. Dahlmann, M., A. Monks, E. D. Harris, D. Kobelt, M. Osterland, F. Khaireddine, P. Herrmann, W. Kemmner, S. Burock, W. Walther, R. H. Shoemaker, and U. Stein. Combination of Wnt/beta-catenin targets S100A4 and DKK1 improves prognosis of human colorectal cancer. Cancers (Basel). 14(1):37, 2021.

    Article  Google Scholar 

  10. Fei, F., K. Liu, C. Li, J. Du, Z. Wei, B. Li, Y. Li, Y. Zhang, and S. Zhang. Molecular mechanisms by which S100A4 regulates the migration and invasion of PGCCs with their daughter cells in human colorectal cancer. Front. Oncol. 10:182, 2020.

    Article  Google Scholar 

  11. Harbeck, N., F. Penault-Llorca, J. Cortes, M. Gnant, N. Houssami, P. Poortmans, K. Ruddy, J. Tsang, and F. Cardoso. Breast cancer. Nat. Rev. Dis. Primers. 5(1):66, 2019.

    Article  Google Scholar 

  12. Ishikawa, M., M. Osaki, M. Yamagishi, K. Onuma, H. Ito, F. Okada, and H. Endo. Correlation of two distinct metastasis-associated proteins, MTA1 and S100A4, in angiogenesis for promoting tumor growth. Oncogene. 38(24):4715–4728, 2019.

    Article  Google Scholar 

  13. Kalluri, R., and V. S. LeBleu. The biology, function, and biomedical applications of exosomes. Science. 2020. https://doi.org/10.1126/science.aau6977.

    Article  Google Scholar 

  14. Kargaard, A., J. P. G. Sluijter, and B. Klumperman. Polymeric siRNA gene delivery—transfection efficiency versus cytotoxicity. J. Control. Release. 316:263–291, 2019.

    Article  Google Scholar 

  15. Kim, M. S., M. J. Haney, Y. Zhao, V. Mahajan, I. Deygen, N. L. Klyachko, E. Inskoe, A. Piroyan, M. Sokolsky, O. Okolie, S. D. Hingtgen, A. V. Kabanov, and E. V. Batrakova. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 12(3):655–664, 2016.

    Article  Google Scholar 

  16. Kim, B., S. Jung, H. Kim, J. O. Kwon, M. K. Song, M. K. Kim, H. J. Kim, and H. H. Kim. The role of S100A4 for bone metastasis in prostate cancer cells. BMC Cancer. 21(1):137, 2021.

    Article  Google Scholar 

  17. Li, J., Y. Tian, D. Shan, A. Gong, L. Zeng, W. Ren, L. **ang, E. Gerhard, J. Zhao, J. Yang, and A. Wu. Neuropeptide Y Y1 receptor-mediated biodegradable photoluminescent nanobubbles as ultrasound contrast agents for targeted breast cancer imaging. Biomaterials. 116:106–117, 2017.

    Article  Google Scholar 

  18. Limbach, L. K., Y. Li, R. N. Grass, T. J. Brunner, M. A. Hintermann, M. Muller, D. Gunther, and W. J. Stark. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 39(23):9370–9376, 2005.

    Article  Google Scholar 

  19. Mishra, S. K., H. R. Siddique, and M. Saleem. S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer Metastasis Rev. 31(1–2):163–172, 2012.

    Article  Google Scholar 

  20. Nader, J. S., J. Guillon, C. Petit, A. Boissard, F. Franconi, S. Blandin, S. Lambot, M. Gregoire, V. Verriele, B. Nawrocki-Raby, P. Birembaut, O. Coqueret, C. Guette, and D. L. Pouliquen. S100A4 is a biomarker of tumorigenesis, EMT, invasion, and colonization of host organs in experimental malignant mesothelioma. Cancers (Basel). 12(4):939, 2020.

    Article  Google Scholar 

  21. Ochiya, T., K. Takenaga, and H. Endo. Silencing of S100A4, a metastasis-associated protein, in endothelial cells inhibits tumor angiogenesis and growth. Angiogenesis. 17(1):17–26, 2014.

    Article  Google Scholar 

  22. Pecot, C. V., G. A. Calin, R. L. Coleman, G. Lopez-Berestein, and A. K. Sood. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer. 11(1):59–67, 2011.

    Article  Google Scholar 

  23. Pofali, P., A. Mondal, and V. Londhe. Exosome as a natural gene delivery vector for cancer treatment. Curr. Cancer Drug Targets. 20(11):821–830, 2020.

    Article  Google Scholar 

  24. Rakha, E. A., and S. Chan. Metastatic triple-negative breast cancer. Clin. Oncol. (R. Coll. Radiol.). 23(9):587–600, 2011.

    Article  Google Scholar 

  25. Rezaie, J., S. Ajezi, C. B. Avci, M. Karimipour, M. H. Geranmayeh, A. Nourazarian, E. Sokullu, A. Rezabakhsh, and R. Rahbarghazi. Exosomes and their application in biomedical field: difficulties and advantages. Mol. Neurobiol. 55(4):3372–3393, 2018.

    Article  Google Scholar 

  26. Sugahara, K. N., G. B. Braun, T. H. de Mendoza, V. R. Kotamraju, R. P. French, A. M. Lowy, T. Teesalu, and E. Ruoslahti. Tumor-penetrating iRGD peptide inhibits metastasis. Mol. Cancer Ther. 14(1):120–128, 2015.

    Article  Google Scholar 

  27. Tannock, I. F., and J. A. Hickman. Limits to personalized cancer medicine. N. Engl. J. Med. 375(13):1289–1294, 2016.

    Article  Google Scholar 

  28. Thery, C., L. Zitvogel, and S. Amigorena. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2(8):569–579, 2002.

    Article  Google Scholar 

  29. Van den Boorn, J. G., M. Schlee, C. Coch, and G. Hartmann. SiRNA delivery with exosome nanoparticles. Nat. Biotechnol. 29(4):325–326, 2011.

    Article  Google Scholar 

  30. Van der Pol, E., F. A. Coumans, A. E. Grootemaat, C. Gardiner, I. L. Sargent, P. Harrison, A. Sturk, T. G. van Leeuwen, and R. Nieuwland. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 12(7):1182–1192, 2014.

    Article  Google Scholar 

  31. Yin, H., J. Yang, Q. Zhang, J. Yang, H. Wang, J. Xu, and J. Zheng. iRGD as a tumor penetrating peptide for cancer therapy (Review). Mol. Med. Rep. 15(5):2925–2930, 2017.

    Article  Google Scholar 

  32. Zhang, X., H. Zhang, J. Gu, J. Zhang, H. Shi, H. Qian, D. Wang, W. Xu, J. Pan, and H. A. Santos. Engineered extracellular vesicles for cancer therapy. Adv. Mater.33(14):e2005709, 2021.

    Article  Google Scholar 

  33. Zhao, L., C. Gu, Y. Gan, L. Shao, H. Chen, and H. Zhu. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J. Control. Release. 318:1–15, 2020.

    Article  Google Scholar 

  34. Zhao, Z., A. Ukidve, J. Kim, and S. Mitragotri. Targeting strategies for tissue-specific drug delivery. Cell. 181(1):151–167, 2020.

    Article  Google Scholar 

  35. Zhou, Y., M. Han, and J. Gao. Prognosis and targeting of pre-metastatic niche. J. Control. Release. 325:223–234, 2020.

    Article  Google Scholar 

Download references

Funding

This study was supported by Science and technology innovation project of Foshan (2220001003854, 2220001004847), Medical research project of Foshan Health Bureau (20220479), GuangDong Basic and Applied Basic Research Foundation (2021A1515111087), Medical Scientific Research Foundation of Guangdong Province (A2022509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolin Ye.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Ethical Approval

All animal studies were carried out following the protocols established by the Ethics Committee of the First People’s Hospital of Foshan.

Additional information

Associate Editor Alyssa Panitch oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 352 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., He, T., Zhang, K. et al. Tumor-Targeting Extracellular Vesicles Loaded with siS100A4 for Suppressing Postoperative Breast Cancer Metastasis. Cel. Mol. Bioeng. 16, 117–125 (2023). https://doi.org/10.1007/s12195-022-00757-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-022-00757-5

Keywords

Navigation