Log in

Interactome analysis reveals versatile functions of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 in RNA processing within the nucleus and cytoplasm

  • Short Communication
  • Published:
Cell Stress and Chaperones Aims and scope

An Erratum to this article was published on 21 January 2015

Abstract

Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3) shares an RNA chaperone function with E. coli cold shock proteins and regulates freezing tolerance during cold acclimation. Here, we screened for AtCSP3-interacting proteins using a yeast two-hybrid system and 38 candidate interactors were identified. Sixteen of these were further confirmed in planta interaction between AtCSP3 by a bi-molecular fluorescence complementation assay. We found that AtCSP3 interacts with CONSTANS-LIKE protein 15 and nuclear poly(A)-binding proteins in nuclear speckles. Three 60S ribosomal proteins (RPL26A, RPL40A/UBQ2, and RPL36aB) and the Gar1 RNA-binding protein interacted with AtCSP3 in the nucleolus and nucleoplasm, suggesting that AtCSP3 functions in ribosome biogenesis. Interactions with LOS2/enolase and glycine-rich RNA-binding protein 7 that are cold inducible, and an mRNA decap** protein 5 (DCP5) were observed in the cytoplasm. These data suggest that AtCSP3 participates in multiple complexes that reside in nuclear and cytoplasmic compartments and possibly regulates RNA processing and functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

BiFC:

Bi-molecular fluorescence complementation

COL:

CONSTANS-LIKE protein

CBF:

C-repeat-binding factor

CSD:

Cold shock domain

CSPs:

Cold shock domain protein

DCP:

Decap** protein

Gar:

Glycine-arginine rich domain

GFP:

Green fluorescent protein

GRP:

Glycine-rich RNA-binding protein

LOS:

Low expression of osmotically responsive gene

PABN:

Nuclear type of poly(A)-binding protein

RPL:

Ribosomal protein

YFP:

Yellow fluorescent protein

References

  • Ali GS, Golovkin M, Reddy AS (2003) Nuclear localization and in vivo dynamics of a plant-specific serine/arginine-rich protein. Plant J Cell Mol Biol 36(6):883–893

    Article  CAS  Google Scholar 

  • Allemand E, Hastings ML, Murray MV, Myers MP, Krainer AR (2007) Alternative splicing regulation by interaction of phosphatase PP2Cgamma with nucleic acid-binding protein YB-1. Nat Struct Mol Biol 14(7):630–638. doi:10.1038/nsmb1257

    Article  PubMed  CAS  Google Scholar 

  • Aubourg S, Kreis M, Lecharny A (1999) The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res 27(2):628–636

    Article  PubMed  CAS  Google Scholar 

  • Calado A, Carmo-Fonseca M (2000) Localization of poly(A)-binding protein 2 (PABP2) in nuclear speckles is independent of import into the nucleus and requires binding to poly(A) RNA. J Cell Sci 113(Pt 12):2309–2318

    PubMed  CAS  Google Scholar 

  • Chen J, Guo K, Kastan MB (2012) Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA. J Biol Chem 287(20):16467–16476. doi:10.1074/jbc.M112.349274

    Article  PubMed  CAS  Google Scholar 

  • Coller JM, Gray NK, Wickens MP (1998) mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev 12(20):3226–3235

    Article  PubMed  CAS  Google Scholar 

  • Datta S, Hettiarachchi GH, Deng XW, Holm M (2006) Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell 18(1):70–84. doi:10.1105/tpc.105.038182

    Article  PubMed  CAS  Google Scholar 

  • Dhawan L, Liu B, Pytlak A, Kulshrestha S, Blaxall BC, Taubman MB (2012) Y-box binding protein 1 and RNase UK114 mediate monocyte chemoattractant protein 1 mRNA stability in vascular smooth muscle cells. Mol Cell Biol 32(18):3768–3775. doi:10.1128/MCB.00846-12

    Article  PubMed  CAS  Google Scholar 

  • Didier DK, Schiffenbauer J, Woulfe SL, Zacheis M, Schwartz BD (1988) Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc Natl Acad Sci U S A 85(19):7322–7326

    Article  PubMed  CAS  Google Scholar 

  • Evdokimova V, Ruzanov P, Imataka H, Raught B, Svitkin Y, Ovchinnikov LP, Sonenberg N (2001) The major mRNA-associated protein YB-1 is a potent 5' cap-dependent mRNA stabilizer. EMBO J 20(19):5491–5502. doi:10.1093/emboj/20.19.5491

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Dong CH, Lee H, Zhu J, **ong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17(1):256–267. doi:10.1105/tpc.104.027557

    Article  PubMed  CAS  Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166(5):293–300

    Article  PubMed  CAS  Google Scholar 

  • Graumann PL, Marahiel MA (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23(8):286–290

    Article  PubMed  CAS  Google Scholar 

  • Henras AK, Capeyrou R, Henry Y, Caizergues-Ferrer M (2004) Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs. RNA 10(11):1704–1712. doi:10.1261/rna.7770604

    Article  PubMed  CAS  Google Scholar 

  • Hou X, **e K, Yao J, Qi Z, **ong L (2009) A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci U S A 106(15):6410–6415. doi:10.1073/pnas.0901940106

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272(1):196–202

    Article  PubMed  CAS  Google Scholar 

  • Kaminaka H, Nake C, Epple P, Dittgen J, Schutze K, Chaban C, Holt BF 3rd, Merkle T, Schafer E, Harter K, Dangl JL (2006) bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J 25(18):4400–4411. doi:10.1038/sj.emboj.7601312

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193–195

    Article  PubMed  CAS  Google Scholar 

  • Karlson D, Imai R (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol 131(1):12–15. doi:10.1104/pp.014472

    Article  PubMed  CAS  Google Scholar 

  • Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277(38):35248–35256. doi:10.1074/jbc.M205774200

    Article  PubMed  CAS  Google Scholar 

  • Kastenmayer JP, Green PJ (2000) Novel features of the XRN-family in Arabidopsis: evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm. Proc Natl Acad Sci U S A 97(25):13985–13990. doi:10.1073/pnas.97.25.13985

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35(2):506–516. doi:10.1093/nar/gkl1076

    Article  PubMed  CAS  Google Scholar 

  • Kim MH, Sasaki K, Imai R (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J Biol Chem 284(35):23454–23460. doi:10.1074/jbc.M109.025791

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Noguchi S, Hayashi YK, Tsukahara T, Shimizu T, Arahata K (2001) The product of an oculopharyngeal muscular dystrophy gene, poly(A)-binding protein 2, interacts with SKIP and stimulates muscle-specific gene expression. Hum Mol Genet 10(11):1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Kiss T (2001) Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20(14):3617–3622. doi:10.1093/emboj/20.14.3617

    Article  PubMed  CAS  Google Scholar 

  • Kohno K, Izumi H, Uchiumi T, Ashizuka M, Kuwano M (2003) The pleiotropic functions of the Y-box-binding protein, YB-1. BioEssays 25(7):691–698. doi:10.1002/bies.10300

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Suzuki T, Kato T, Enomoto K, Sato S, Tabata S, Saez-Vasquez J, Echeverria M, Nakagawa T, Ishiguro S, Nakamura K (2007) Sugar-inducible expression of the nucleolin-1 gene of Arabidopsis thaliana and its role in ribosome synthesis, growth and development. Plant J 49(6):1053–1063. doi:10.1111/j.1365-313X.2006.03016.x

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4(8):605–612. doi:10.1038/nrm1172

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Guo Y, Ohta M, **ong L, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21(11):2692–2702. doi:10.1093/emboj/21.11.2692

    Article  PubMed  CAS  Google Scholar 

  • Lim GH, Zhang X, Chung MS, Lee DJ, Woo YM, Cheong HS, Kim CS (2010) A putative novel transcription factor, AtSKIP, is involved in abscisic acid signalling and confers salt and osmotic tolerance in Arabidopsis. New Phytol 185(1):103–113. doi:10.1111/j.1469-8137.2009.03032.x

    Article  PubMed  CAS  Google Scholar 

  • Lorkovic ZJ, Hilscher J, Barta A (2004) Use of fluorescent protein tags to study nuclear organization of the spliceosomal machinery in transiently transformed living plant cells. Mol Biol Cell 15(7):3233–3243. doi:10.1091/mbc.E04-01-0055

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Thomashow MF (2009) A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J Cell Mol Biol 60(2):328–339. doi:10.1111/j.1365-313X.2009.03957.x

    Article  CAS  Google Scholar 

  • Moss EG, Tang L (2003) Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol 258(2):432–442

    Article  PubMed  CAS  Google Scholar 

  • Nakaminami K, Hill K, Perry SE, Sentoku N, Long JA, Karlson DT (2009) Arabidopsis cold shock domain proteins: relationships to floral and silique development. J Exp Bot 60(3):1047–1062. doi:10.1093/jxb/ern351

    Article  PubMed  CAS  Google Scholar 

  • Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J Cell Mol Biol 18(4):455–463

    Article  CAS  Google Scholar 

  • Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JW, Shaw PJ (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16(1):260–269. doi:10.1091/mbc.E04-09-0791

    Article  PubMed  CAS  Google Scholar 

  • Petricka JJ, Nelson TM (2007) Arabidopsis nucleolin affects plant development and patterning. Plant Physiol 144(1):173–186. doi:10.1104/pp.106.093575

    Article  PubMed  CAS  Google Scholar 

  • Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136

    PubMed  CAS  Google Scholar 

  • Phadtare S, Severinov K (2010) RNA remodeling and gene regulation by cold shock proteins. RNA Biol 7(6):788–795

    Article  PubMed  CAS  Google Scholar 

  • Pontvianne F, Matia I, Douet J, Tourmente S, Medina FJ, Echeverria M, Saez-Vasquez J (2007) Characterization of AtNUC-L1 reveals a central role of nucleolin in nucleolus organization and silencing of AtNUC-L2 gene in Arabidopsis. Mol Biol Cell 18(2):369–379. doi:10.1091/mbc.E06-08-0751

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Imai R (2011) Pleiotropic roles of cold shock domain proteins in plants. Front Plant Sci 2:116. doi:10.3389/fpls.2011.00116

    PubMed  CAS  Google Scholar 

  • Sasaki K, Kim MH, Imai R (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364(3):633–638. doi:10.1016/j.bbrc.2007.10.059

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R, Kusano T (2005) LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant Cell Physiol 46(10):1623–1634. doi:10.1093/pcp/pci178

    Article  PubMed  CAS  Google Scholar 

  • Tanaka KJ, Ogawa K, Takagi M, Imamoto N, Matsumoto K, Tsujimoto M (2006) RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes. J Biol Chem 281(52):40096–40106. doi:10.1074/jbc.M609059200

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97–100. doi:10.1126/science.1154040

    Article  PubMed  CAS  Google Scholar 

  • Wahle E (1995) Poly(A) tail length control is caused by termination of processive synthesis. J Biol Chem 270(6):2800–2808

    PubMed  CAS  Google Scholar 

  • Wang N, Yamanaka K, Inouye M (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181(5):1603–1609

    PubMed  CAS  Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18(11):2971–2984. doi:10.1105/tpc.106.043299

    Article  PubMed  CAS  Google Scholar 

  • **a B, Ke H, Inouye M (2001) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol 40(1):179–188

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Chua NH (2009) Arabidopsis decap** 5 is required for mRNA decap**, P-body formation, and translational repression during postembryonic development. Plant Cell 21(10):3270–3279. doi:10.1105/tpc.109.070078

    Article  PubMed  CAS  Google Scholar 

  • Yang WH, Yu JH, Gulick T, Bloch KD, Bloch DB (2006) RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules. RNA 12(4):547–554. doi:10.1261/rna.2302706

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the Japan Society for the Promotion of Science (KAKENHI Scientific Research B 19380063) and NARO project 112g0 (Wheat and Soybean Biotechnology) to R.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryozo Imai.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12192-014-0567-7.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MH., Sonoda, Y., Sasaki, K. et al. Interactome analysis reveals versatile functions of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 in RNA processing within the nucleus and cytoplasm. Cell Stress and Chaperones 18, 517–525 (2013). https://doi.org/10.1007/s12192-012-0398-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-012-0398-3

Keywords

Navigation