Log in

Complex dynamic behaviour on fractional predator–prey model of mathematical ecology

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a mathematical predator–prey model in which the predator population is divided into two stages: mature (adult) stage and juvenile stage. Therefore, three coupled ordinary differential equations are incorporated in the predator–prey model with three state variables; mature predator, juvenile predator and prey. This predator–prey model is described in terms of Caputo, Caputo–Fabrizio (C–F) and fractal–fractional (F–F) operators. The fractional order predator–prey dynamical model helps to describe the efficacy (usefulness, effectiveness) of memory and hereditary properties with the help of fractional operators. We have investigated the uniqueness and existence of solutions with C–F and fractal–fractional (F–F) derivatives using the fixed point postulate. This model also exhibits Ulam’s type of stability based on nonlinear functional analysis. Numerical and behavioral analyses of the non-integer predator–prey model have been carried out using phase portraits. The predator–prey system with Caputo–Fabrizio (C–F) and fractal–fractional (F–F) operators have been solved numerically via the Adams-Bashforth scheme and new predictor–corrector scheme respectively. In an analysis of numerical simulations of predator–prey models, we have illustrated the effectiveness and applicability of these methods. Numerical simulations were performed using Matlab programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

Data available on request from the authors.

References

  1. Freed, A., Diethelm, K., Luchko, Y.: Fractional-order viscoelasticity (FOV): constitutive development using the fractional calculus: first annual report (2002)

  2. Sabatier, J.: Fractional order models for electrochemical devices. In: Fractional Dynamics, pp. 141–160 (2015)

  3. Engheia, N.: On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 39(4), 35–46 (1997)

    Article  Google Scholar 

  4. Baleanu, D., Dumitru, Guvenc, Z.B., Machado, J.T., et al.: New Trends in Nanotechnology and Fractional Calculus Applications, p. 10. Springer, Cham (2010)

    Book  Google Scholar 

  5. Naifar, O., Makhlouf, A.B.: Fractional Order Systems-Control Theory and Applications. Springer, Berlin (2022)

    Book  Google Scholar 

  6. Qiao, M., Liang, Y., Tavares, A., Shi, X.: Multilayer perceptron network optimization for chaotic time series modeling. Entropy 25, 7 (2023)

    Article  MathSciNet  Google Scholar 

  7. Chen, W., Sun, H., Zhang, X., Korosak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59(05), 1754–1758 (2010)

    Article  MathSciNet  Google Scholar 

  8. Choudhary, A., Kumar, D., Singh, J.: A fractional model of fluid flow through porous media with mean capillary pressure. J. Assoc. Arab Univ. Basic Appl. Sci. 21, 59–63 (2016)

    Google Scholar 

  9. Kumar, S., Kumar, A., Samet, B., Aguilar, J.G., Osman, M.: A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos Solitons Fractals 141, 110321 (2020)

    Article  MathSciNet  Google Scholar 

  10. Agrawal, K., Kumar, R., Kumar, S., Hadid, S., Momani, S.: Bernoulli wavelet method for non-linear fractional glucose-insulin regulatory dynamical system. Chaos Solitons Fractals 164, 112632 (2022)

    Article  MathSciNet  Google Scholar 

  11. Kilbas, A.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  12. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods, p. 3. World Scientific, Singapore (2012)

    Book  Google Scholar 

  13. Kumar, S., Kumar, A., Abdel-Aty, A.H., Alharthi, M.: A study on four-species fractional population competition dynamical model. Results Phys. 24, 104089 (2021)

    Article  Google Scholar 

  14. Kumar, A., Kumar, S.: A study on eco-epidemiological model with fractional operators. Chaos Solitons Fractals 156, 111697 (2022)

    Article  MathSciNet  Google Scholar 

  15. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  16. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)

    Google Scholar 

  17. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. ar**v preprint ar**v:1602.03408 (2016)

  18. Atangana, A.: Fractal–fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102, 396–406 (2017)

    Article  MathSciNet  Google Scholar 

  19. Kumar, A., Kumar, S., Momani, S., Hadid, S.: A chaos study of fractal–fractional predator–prey model of mathematical ecology. Math. Comput. Simul. (2023). https://doi.org/10.1016/j.matcom.2023.09.010

  20. Agrawal, K., Kumar, S., Akgul, A.: An algorithm for numerical study of fractional atmospheric model using Bernoulli polynomials. J. Appl. Math. Comput. 1–34 (2024). https://doi.org/10.1007/s12190-024-02084-6

  21. Hattaf, K.: A new class of generalized fractal and fractal–fractional derivatives with non-singular kernels. Fractal Fract. 7(5), 395 (2023)

    Article  Google Scholar 

  22. Chakraborty, K., Jana, S., Kar, T.K.: Global dynamics and bifurcation in a stage structured prey–predator fishery model with harvesting. Appl. Math. Comput. 218(18), 9271–9290 (2012)

    MathSciNet  Google Scholar 

  23. Saka, H.E., Lee, S., Jang, B.: Dynamic analysis of fractional-order predator-prey biological economic system with Holling type II functional response. Nonlinear Dyn. 96, 407–416 (2019)

    Article  Google Scholar 

  24. Huang, J., Gong, Y., Ruan, S.: Bifurcation analysis in a predator–prey model with constant-yield predator harvesting. Discrete Contin. Dyn. Syst. Ser. B 18(8), 2101–2121 (2013)

    MathSciNet  Google Scholar 

  25. Claessen, D., Roos, A.M.D., Persson, L.: Dwarfs and giants: cannibalism and competition in size-structured populations. Am. Nat. 155(2), 219–237 (2000)

    Article  Google Scholar 

  26. Diekmann, O., Nisbet, R., Gurney, W., Bosch, F.V.D.: Simple mathematical models for cannibalism: a critique and a new approach. Math. Biosci. 78(1), 21–46 (1986)

    Article  MathSciNet  Google Scholar 

  27. Dong, Q., Deangelis, D.L.: Consequences of cannibalism and competition for food in a smallmouth bass population: an individual-based modeling study. Trans. Am. Fish. Soc. 127(2), 174–191 (1998)

    Article  Google Scholar 

  28. Bogstad, B., Lilly, G.R., Mehl, S., Palsson, O.K., Stefansson, G.: Cannibalism and year-class strength in Atlantic cod (Gadus morhua L.) in Arcto-boreal ecosystems (Barents Sea, Iceland, and eastern Newfoundland) 576–599 (1994)

  29. Kohlmeier, C., Ebenhoh, W.: The stabilizing role of cannibalism in a predator–prey system. Bull. Math. Biol. 57, 401–411 (1995)

    Article  Google Scholar 

  30. Bobisud, L.: Cannibalism as an evolutionary strategy. Bull. Math. Biol. 47(9), 7219–7242 (1976). https://doi.org/10.1002/mma.9969

    Article  MathSciNet  Google Scholar 

  31. Bosch, F.V.D., Gabriel, W.: Cannibalism in an age-structured predator–prey system. Bull. Math. Biol. 59(3), 551–567 (1997)

    Article  Google Scholar 

  32. Bentout, S.: Analysis of global behavior in an age-structured epidemic model with nonlocal dispersal and distributed delay. Math. Methods Appl. Sci

  33. Soufiane, B., Touaoula, T.M.: Global analysis of an infection age model with a class of nonlinear incidence rates. J. Math. Anal. Appl. 434(2), 1211–1239 (2016)

    Article  MathSciNet  Google Scholar 

  34. Soufiane, B., Tridane, A., Djilali, S., Touaoula, T.M.: Age-structured modeling of COVID-19 epidemic in the USA, UAE and Algeria. Alex. Eng. J. 60(1), 401–411 (2021)

    Article  Google Scholar 

  35. Khader, M., Sweilam, N., Kharrat, B.: Numerical simulation for solving fractional Riccati and logistic differential equations as a difference equation. Appl. Appl. Math. Int. J. (AAM) 15(1), 37 (2020)

    Google Scholar 

  36. Khan, F.S., Khalid, M., Bazighifan, O., El-Mesady, A.: Euler’s numerical method on fractional DSEK model under ABC derivative. Complexity 2022 (2022)

  37. Gao, W., Veeresha, P., Baskonus, H.M.: Dynamical analysis fractional-order financial system using efficient numerical methods. Appl. Math. Sci. Eng. 31(1), 2155152 (2023)

    Article  MathSciNet  Google Scholar 

  38. Owolabi, K.M., Atangana, A.: Analysis and application of new fractional Adams-Bashforth scheme with Caputo–Fabrizio derivative. Chaos Solitons Fractals 105, 111–119 (2017)

    Article  MathSciNet  Google Scholar 

  39. Toufik, M., Atangana, A.: New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models. Eur. Phys. J. Plus 132(10), 1–16 (2017)

    Article  Google Scholar 

  40. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–32 (2002)

    Article  MathSciNet  Google Scholar 

  41. Garrappa, R.: On linear stability of predictor–corrector algorithms for fractional differential equations. Int. J. Comput. Math. 87(10), 2281–2290 (2010)

    Article  MathSciNet  Google Scholar 

  42. Bhalekar, S., Gejji, V.D.: A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl 1(5), 1–9 (2011)

    Google Scholar 

  43. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    Google Scholar 

  44. Magnusson, K.G.: Destabilizing effect of cannibalism on a structured predator–prey system. Math. Biosci. 155(1), 61–75 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Bahuguna, D. & Kumar, S. Complex dynamic behaviour on fractional predator–prey model of mathematical ecology. J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02171-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12190-024-02171-8

Keywords

Navigation