Log in

High-order accurate variable time step compact schemes for pricing vanilla and exotic options

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a fourth order accurate variable time step compact scheme is developed for pricing vanilla and exotic options. Variable time step midpoint discretization is considered for the temporal variable, and compact scheme is utilized for the spatial variable. The time-regularity estimates along with the existence and uniqueness results are obtained for the proposed temporal semi-discretization. The semi-discrete scheme is proved to be stable using the root condition for linear multi-step method. The stability condition is derived for the fully discrete problem using a difference equation based approach. The numerical illustrations are presented to validate the derived stability condition. Additionally, the log-log plot confirms that the proposed scheme is fourth order accurate in space variable and second order accurate in time variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Black, F., Scholes, M.: Pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  MathSciNet  Google Scholar 

  2. Dupire, B.: Pricing with a smile. RISK Mag. 39, 18–20 (1994)

    Google Scholar 

  3. Düring, B., Fournié, M., Jüngel, A.: High order compact finite difference schemes for a nonlinear Black–Scholes equation. Int. J. Theor. Appl. Finance 6(07), 767–789 (2003)

    Article  MathSciNet  Google Scholar 

  4. Achdou, Y., Pironneau, O.: Computational Methods for Options Pricing. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  5. Duffy, D.J.: Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. Wiley, New York (2013)

    Google Scholar 

  6. Ye, G.L.: Asian options versus vanilla options: a boundary analysis. J. Risk Finance 9(2), 188–199 (2008)

    Article  Google Scholar 

  7. Zhang, J.E.: Pricing continuously sampled Asian options with perturbation method. J. Futures Mark.: Futures Opt. Other Deriv. Prod. 23(6), 535–560 (2003)

    Article  Google Scholar 

  8. Boyle, P.P.: Options: a Monte–Carlo approach. J. Financ. Econ. 4(3), 323–338 (1977)

    Article  Google Scholar 

  9. Kemna, A.G., Vorst, A.C.: A pricing method for options based on average asset values. J. Bank. Finance 14(1), 113–129 (1990)

    Article  Google Scholar 

  10. Zvan, R., Forsyth, P.A., Vetzal, K.: Robust numerical methods for PDE models of Asian options. J. Comput. Finance 1, 39–78 (1998)

    Article  Google Scholar 

  11. Ingersoll, J.: Theory of Financial Decision Making. Rowman and Littlefield, Lanham (1987)

    Google Scholar 

  12. Rogers, L.C.G., Shi, Z.: The value of an Asian option. J. Appl. Probab. 32(4), 1077–1088 (1995)

    Article  MathSciNet  Google Scholar 

  13. Wilmott, P., Dewynne, J., Howison, S.: Option pricing: mathematical models and computation

  14. Vecer, J.: A new PDE approach for pricing arithmetic average Asian options. J. Comput. Finance 4(4), 105–113 (2001)

    Article  Google Scholar 

  15. Dubois, F., Lelièvre, T.: Efficient pricing of Asian options by the PDE approach

  16. D’halluin, Y., Forsyth, P.A., Labahn, G.: A semi-Lagrangian approach for American Asian options under jump-diffusion. SIAM J. Sci. Comput. 27, 315–345 (2005)

    Article  MathSciNet  Google Scholar 

  17. Chen, K.-W., Lyuu, Y.-D.: Accurate pricing formulas for Asian options. Appl. Math. Comput. 188(2), 1711–1724 (2007)

    Article  MathSciNet  Google Scholar 

  18. Fusai, G., Marazzina, D., Marena, M.: Pricing discretely monitored Asian options by maturity randomization. SIAM J. Financ. Math. 2, 383–403 (2011)

    Article  MathSciNet  Google Scholar 

  19. Foschi, P., Pagliarani, S., Pascucci, A.: Approximations for Asian options in local volatility models. J. Comput. Appl. Math. 237, 442–459 (2013)

    Article  MathSciNet  Google Scholar 

  20. Zhang, B., Oosterlee, C.W.: Efficient pricing of European-style Asian options under exponential Levy processes based on Fourier cosine expansions. SIAM J. Financ. Math. 4, 399–426 (2013)

    Article  Google Scholar 

  21. Kumar, A., Tripathi, L.P., Kadalbajoo, M.K.: A numerical study of Asian option with radial basis functions based finite differences method. Eng. Anal. Bound. Elem. 50, 1–7 (2015)

    Article  MathSciNet  Google Scholar 

  22. Milovanović, S., von Sydow, L.: Radial basis function generated finite differences for option pricing problems. Comput. Math. Appl. 75(4), 1462–1481 (2018)

    Article  MathSciNet  Google Scholar 

  23. Patel, K.S., Mehra, M.: High-order compact finite difference method for Black–Scholes PDE. In: Mathematical Analysis and its Applications: Roorkee, India, December 2014, pp. 393–403. Springer, Berlin (2015)

  24. Patel, K.S., Mehra, M.: A numerical study of Asian option with high-order compact finite difference scheme. J. Appl. Math. Comput. 57, 467–491 (2018)

    Article  MathSciNet  Google Scholar 

  25. Spotz, W.F.: High-Order Compact Finite Difference Schemes for Computational Mechanics. The University of Texas at Austin, Austin (1995)

    Google Scholar 

  26. During, B., Heuer, C.: High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions. SIAM J. Numer. Anal. 53, 2113–2124 (2015)

    Article  MathSciNet  Google Scholar 

  27. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)

    Article  MathSciNet  Google Scholar 

  28. Haghi, M., Ilati, M., Dehghan, M.: A radial basis function-Hermite finite difference (RBF-HFD) method for the cubic-quintic complex Ginzburg-Landau equation. Comput. Appl. Math. 42(3), 115 (2023)

    Article  MathSciNet  Google Scholar 

  29. Satyanarayana, C., Yadav, M.K., Nath, M.: Multiquadric based RBF-HFD approximation formulas and convergence properties. Eng. Anal. Bound. Elem. 160, 234–257 (2024)

    Article  MathSciNet  Google Scholar 

  30. Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38(4), 644–662 (1998)

    Article  MathSciNet  Google Scholar 

  31. Emmrich, E.: Stability and error of the variable two-step BDF for semilinear parabolic problems. J. Appl. Math. Comput. 19, 33–55 (2005)

    Article  MathSciNet  Google Scholar 

  32. Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)

    Article  MathSciNet  Google Scholar 

  33. Wang, W., Mao, M., Wang, Z.: Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations. Adv. Comput. Math. 47, 1–28 (2021)

    Article  MathSciNet  Google Scholar 

  34. Wang, W., Mao, M., Wang, Z.: An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function. ESAIM: Math. Model. Numer. Anal. 55(3), 913–938 (2021)

    Article  MathSciNet  Google Scholar 

  35. Kreiss, H.O., Thomee, V., Widlund, O.: Smoothing of initial data and rates of convergence for Parbolic difference equations. Commun. Pure Appl. Math. 23, 241–259 (1970)

    Article  Google Scholar 

  36. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, vol. 840. Springer, Berlin (2006)

    Google Scholar 

  37. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  38. Salmi, S., Toivanen, J.: IMEX schemes for pricing options under jump-diffusion models. Appl. Numer. Math. 84, 33–45 (2014)

    Article  MathSciNet  Google Scholar 

  39. Toivanen, J.: Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput. 30(4), 1949–1970 (2008)

    Article  MathSciNet  Google Scholar 

  40. Goswami, A., Patel, K.S., Sahu, P.K.: A novel difference equation approach for the stability and robustness of compact schemes for variable coefficient PDEs. ar**v:2209.02873

  41. Milovanović, S., von Sydow, L.: A high order method for pricing of financial derivatives using radial basis function generated finite differences. Math. Comput. Simul. 174, 205–217 (2020)

    Article  MathSciNet  Google Scholar 

  42. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  43. Zhang, J.E.: A semi-analytical method for pricing and hedging continuously sampled arithmetic average rate options. J. Comput. Finance 5(1), 59–80 (2001)

    Article  Google Scholar 

  44. Ju, N.: Pricing Asian and basket options via Taylor expansion. J. Comput. Finance 5(3), 79–103 (2002)

    Article  Google Scholar 

  45. Hsu, W.W.-Y., Lyuu, Y.-D.: A convergent quadratic-time lattice algorithm for pricing European-style Asian options. Appl. Math. Comput. 189(2), 1099–1123 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. Anindya Goswami, Department of Mathematics, Indian Institute of Science Education and Research, Pune, India for sharing his valuable suggestions in carrying out this research. The corresponding author acknowledge the support from NBHM India for financial support under the Grant No. 02011-32-2023-R &D-II-13347. The first author acknowledge the financial support by University Grants Commission (UGC), India (Student ID-201920-191620088865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldip Singh Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P.K., Patel, K.S. High-order accurate variable time step compact schemes for pricing vanilla and exotic options. J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02118-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12190-024-02118-z

Keywords

Navigation