Log in

Uniform convergence analysis of a new adaptive upwind finite difference method for singularly perturbed convection-reaction-diffusion boundary value problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a new adaptive upwind finite difference method based on the arc-length equidistribution principle is studied for solving the general linear singularly perturbed convection-reaction-diffusion two-point boundary value problem. Under the discrete comparison principle and its derived properties, the a posteriori error estimate of the upwind finite difference scheme on an arbitrary mesh is obtained by using a linear interpolation, the existence of the solution of the adaptive upwind finite difference method is proved without the presupposition, and the boundedness of the arc-length of the numerical solution and then the uniform first-order convergence of the adaptive upwind finite difference method are achieved by the discrete Green’s function. Finally, the proposed method is verified to be uniformly first-order convergent and is compared with the existing method in numerical examples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)

    Google Scholar 

  2. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)

    Book  Google Scholar 

  3. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Classics in Applied Mathematics, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1995)

    Book  Google Scholar 

  4. Capper, S., Cash, J.R., Mazzia, F.: On the development of effective algorithms for the numerical solution of singularly perturbed two-point boundary value problems. Int. J. Comput. Sci. Math. 1, 42–57 (2007)

    Article  MathSciNet  Google Scholar 

  5. Kadalbajoo, M.K., Gupta, V.: A brief survey on numerical methods for solving singularly perturbed problems. Appl. Math. Comput. 217(8), 3641–3716 (2010)

    MathSciNet  Google Scholar 

  6. Ranjan, R., Prasad, H.S.: A fitted finite difference scheme for solving singularly perturbed two point boundary value problems. Inf. Sci. Lett. 9(2), 65–73 (2020)

    Article  Google Scholar 

  7. Roos, H.-G., Linß, T.: Sufficient conditions for uniform convergence on layer-adapted grids. Computing 63(1), 27–45 (1999)

    Article  MathSciNet  Google Scholar 

  8. Linß, T.: Layer-adapted meshes for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 192(9/10), 1061–1105 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  9. Linß, T., Roos, H.-G., Vulanović, R.: Uniform pointwise convergence on Shishkin-type meshes for quasi-linear convection-diffusion problems. SIAM J. Numer. Anal. 38, 897–912 (2000)

    Article  MathSciNet  Google Scholar 

  10. Zheng, Q., Li, X., Gao, Y.: Uniformly convergent hybrid schemes for solutions and derivatives in quasilinear singularly perturbed bvps. Appl. Numer. Math. 91, 46–59 (2015)

    Article  MathSciNet  Google Scholar 

  11. Mackenzie, J.A.: Uniform convergence analysis of an upwind finite-difference approximation of a convection-diffusion boundary value problem on an adaptive grid. IMA J. Numer. Anal. 19, 233–249 (1999)

    Article  MathSciNet  Google Scholar 

  12. Qiu, Y., Sloan, D.M.: Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptively generated grid. J. Comput. Appl. Math. 101, 1–25 (1999)

    Article  MathSciNet  Google Scholar 

  13. Qiu, Y., Sloan, D.M., Tang, T.: Numerical solution of a singularly perturbed two point boundary value problem using equidistribution: analysis of convergence. J. Comput. Appl. Math. 116, 121–143 (2000)

    Article  MathSciNet  Google Scholar 

  14. Chen, Y.: Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution. J. Comput. Appl. Math. 159(1), 25–34 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  15. Beckett, G.M., Mackenzie, J.A.: Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35, 87–109 (2000)

    Article  MathSciNet  Google Scholar 

  16. Beckett, M.G., Mackenzie, J.A.: On a uniformly accurate finite difference approximation of a singularly perturbed reaction-diffusion problem using grid equidistribution. J. Comput. Appl. Math. 131, 381–405 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  17. Linß, T.: Uniform pointwise convergence of finite difference schemes using grid equidistribution. Computing 66(1), 27–39 (2001)

    Article  MathSciNet  Google Scholar 

  18. Kopteva, N., Stynes, M.: A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39(4), 1446–1447 (2001)

    Article  MathSciNet  Google Scholar 

  19. Kopteva, N.: Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39(2), 423–441 (2001)

    Article  MathSciNet  Google Scholar 

  20. Chadha, N.M., Kopteva, N.: A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem. IMA J. Numer. Anal. 31, 188–211 (2011)

    Article  MathSciNet  Google Scholar 

  21. Chen, Y.: Uniform convergence analysis of finite difference approximations for singularly perturbed problems on an adapted grid. Adv. Comput. Math. 24, 197–212 (2006)

    Article  MathSciNet  Google Scholar 

  22. Mohapatra, J., Natesan, S.: Parameter-uniform numerical method for global solution and global normalized flux of singularly perturbed boundary value problems using grid equidistribution. Comput. Math. Appl. 60, 1924–1939 (2010)

    Article  MathSciNet  Google Scholar 

  23. Mohapatra, J., Natesan, S.: Parameter-uniform numerical methods for singularly perturbed mixed boundary value problems using grid equidistribution. J. Appl. Math. Comput. 37, 247–265 (2011)

    Article  MathSciNet  Google Scholar 

  24. Sun, L., Wu, Y., Yang, A.: Uniform convergence analysis of finite difference approximations for advection-reaction-diffusion problem on adaptive grids. Int. J. Comput. Math. 88, 3292–3307 (2011)

    Article  MathSciNet  Google Scholar 

  25. Wang, A., Sun, L.: Uniform convergence analysis of finite difference approximations on adaptive mesh for general singular perturbed problems. IOP Conf. Ser. J. Phys. Conf. Ser. 1324, 012035 (2019)

    Article  Google Scholar 

  26. Liu, L., Chen, Y.: Maximum norm a posteriori error estimates for a singularly perturbed differential difference equation with small delay. Appl. Math. Comput. 277, 801–810 (2014)

    MathSciNet  Google Scholar 

  27. Gupta, A., Kaushik, A.: A robust spline difference method for robin-type reaction-diffusion problem using grid equidistribution. Appl. Math. Comput. 390, 125597 (2021)

    MathSciNet  Google Scholar 

  28. Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems. Appl. Math. Comput. 249, 265–277 (2014)

    MathSciNet  Google Scholar 

  29. Das, P.: An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh. Numer. Algorithms 81, 465–487 (2019)

    Article  MathSciNet  Google Scholar 

  30. Das, P.: Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems. J. Comput. Appl. Math. 290, 16–25 (2015)

    Article  MathSciNet  Google Scholar 

  31. Das, P., Rana, S., Vigo-Aguiar, J.: Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature. Appl. Numer. Math. 148, 79–97 (2020)

    Article  MathSciNet  Google Scholar 

  32. Saini, S., Das, P., Kumar, S.: Computational cost reduction for coupled system of multiple scale reaction diffusion problems with mixed type boundary conditions having boundary layers. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 66 (2023)

    Article  MathSciNet  Google Scholar 

  33. Saini, S., Das, P., Kumar, S.: Parameter uniform higher order numerical treatment for singularly perturbed Robin type parabolic reaction diffusion multiple scale problems with large delay in time. Appl. Numer. Math. 196, 1–21 (2024)

    Article  MathSciNet  Google Scholar 

  34. Das, P.: A higher order difference method for singularly perturbed parabolic partial differential equations. J. Differ. Equ. Appl. 24(3), 452–477 (2018)

    Article  MathSciNet  Google Scholar 

  35. Kumar, K., Podila, P.C., Das, P., Ramos, H.: A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems. Math. Meth. Appl. Sci. 44(16), 12332–12350 (2021)

    Article  MathSciNet  Google Scholar 

  36. Shiromani, R., Shanthi, V., Das, P.: A higher order hybrid-numerical approximation for a class of singularly perturbed two-dimensional convection-diffusion elliptic problem with non-smooth convection and source terms. Comput. Math. Appl. 142, 9–30 (2023)

    Article  MathSciNet  Google Scholar 

  37. Santra, S., Mohapatra, J., Das, P., Choudhuri, D.: Higher order approximations for fractional order integro-parabolic partial differential equations on an adaptive mesh with error analysis. Comput. Math. Appl. 150, 87–101 (2023)

    Article  MathSciNet  Google Scholar 

  38. Srivastava, H.M., Nain, A.K., Vats, R.K., Das, P.: A theoretical study of the fractional-order p-Laplacian nonlinear Hadamard type turbulent flow models having the Ulam-Hyers stability. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 160 (2023)

    Article  MathSciNet  Google Scholar 

  39. Das, P., Rana, S.: Theoretical prospects of fractional order weakly singular Volterra Integro differential equations and their approximations with convergence analysis. Math. Meth. Appl. Sci. 44(11), 9419–9440 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments which help to improve the presentation. This paper is supported by National Natural Science Foundation (Grant No. 11471019) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zheng.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Liu, Z. Uniform convergence analysis of a new adaptive upwind finite difference method for singularly perturbed convection-reaction-diffusion boundary value problems. J. Appl. Math. Comput. 70, 601–618 (2024). https://doi.org/10.1007/s12190-023-01977-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01977-2

Keywords

Mathematics Subject Classification

Navigation