Log in

Stochastic dynamics of a plankton model with zooplankton selectivity and nutritional value of phytoplankton

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the stochastic dynamics of a preferred phytoplankton (PP)–nonpreferred phytoplankton (NP)–zooplankton (Z) model with selectivity of zooplankton and nutritional value of phytoplankton. The mathematical theoretical work mainly gives the existence and uniqueness of the positive solution, provides the results related to stochastic ultimate boundedness and stochastic permanence, shows the dynamics of stochastic extinction and persistence in the mean, and proves the existence of a unique ergodic stationary distribution, which in turn provides a theoretical basis for numerical simulations. The numerical simulation work mainly reveals that the selectivity of zooplankton and nutritional of phytoplankton have a significant impact on the PP–NP–Z dynamics under random environmental fluctuation. It is worth emphasizing that the large nutritional value of preferred phytoplankton has the capacity to result in the extinction of nonpreferred phytoplankton, while the large nutritional value of nonpreferred phytoplankton may be able to initiate the occurrence of harmful algal blooms. Furthermore, it should be noted that the increase of zooplankton selectivity or nutritional value of phytoplankton (preferred phytoplankton and nonpreferred phytoplankton) can cause the stationary distribution of preferred phytoplankton to shift to the left, but the stationary distribution of nonpreferred phytoplankton and zooplankton can shift to the right. These results may contribute to further understanding the complex dynamics of plankton models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dai, Y.H., Yang, S.B., Zhao, D., Hu, C.M., Xu, W., Anderson, D.M., Li, Y., Song, X.P., Boyce, D.G., Gibson, L., Zheng, C.M., Feng, L.: Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 615, 280–284 (2023)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Valipour, R., Fong, P., McCrimmon, C., Zhao, J., Van Stempvoort, D.R., Rao, Y.R.: Hydrodynamics of a large lake with complex geometry and topography: lake the woods. J. Great Lakes Res. 49, 82–96 (2023)

    CAS  Google Scholar 

  3. Hellweger, F.L., Martin, R.M., Eigemann, F., Smith, D.J., Dick, G.J., Wilhelm, S.W.: Models predict planned phosphorus load reduction will make lake Erie more toxic. Science 376, 1001–1005 (2022)

    ADS  CAS  PubMed  Google Scholar 

  4. Jiang, J., Shen, A., Wang, H., Yuan, S.L.: Regulation of phosphate uptake kinetics in the bloom-forming dinoflagellates prorocentrum donghaiense with emphasis on two-stage dynamic process. J. Theor. Biol. 463, 12–21 (2019)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  5. Shen, A.L., Gao, S.F., Heggerud, C.M., Wang, H., Ma, Z.L., Yuan, S.L.: Fluctuation of growth and photosynthetic characteristics in Prorocentrum shikokuense under phosphorus limitation: evidence from field and laboratory. Ecol. Model. 479, 110310 (2023)

    CAS  Google Scholar 

  6. Deepika, S., Veeresha, P.: Dynamics of chaotic waterwheel model with the asymmetric flow within the frame of Caputo fractional operator. Chaos Solitons Fract. 169, 113298 (2023)

    MathSciNet  Google Scholar 

  7. Kavya, K.N., Veeresha, P.K.: Mathematical approach for impact of media awareness on measles disease, Math. Method Appl. Sci., 1–27 (2023). https://doi.org/10.1002/mma.9645

  8. Naik, M.K., Chandrali Baishya, C., Veeresha, P., Baleanu, D.: Design of a fractional-order atmospheric model via a class of ACT-like chaotic system and its sliding mode chaos control. Chaos 33, 023129 (2023)

    MathSciNet  PubMed  Google Scholar 

  9. Priyadarshini P., Veeresha, P.: Analysis of models describing thermocline depth-ocean temperature and dissolved oxygen concentration in the ocean-plankton community. Waves Random Complex, 1–25 (2023). https://doi.org/10.1080/17455030.2023.2226762

  10. Veeresha, P., Akinyemi, L.: Fractional approach for mathematical model of phytoplankton-toxic phytoplankton–zooplankton system with Mittag–Leffler kernel. Int. J. Biomath. 16(3), 1–24 (2023)

    MathSciNet  Google Scholar 

  11. Veeresha, P.: The efficient fractional order based approach to analyze chemical reaction associated with pattern formation. Chaos Solitons Fract. 165, 112862 (2022)

    MathSciNet  Google Scholar 

  12. Veeresha, P.: A numerical approach to the coupled atmospheric ocean model using a fractional operator. Math. Model. Numer. Simulat. Appl. 1(1), 1–10 (2021)

    MathSciNet  Google Scholar 

  13. Sailley, S.F., Polimene, L., Mitra, A., Atkinson, A., Allen, J.I.: Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling. J. Plankton Res. 37, 519–529 (2015)

    CAS  Google Scholar 

  14. Yang, J.G., Yuan, S.L.: Dynamics of a toxic producing phytoplankton–zooplankton model with three-dimensional patch. Appl. Math. Lett. 118, 107146 (2022)

    MathSciNet  Google Scholar 

  15. Huda, M.N., A’yun, Q.Q., Wigantono, S., Sandariria, H., Raming, I., Asmaidi, A.: Effects of harvesting and planktivorous fish on bioeconomic phytoplankton–zooplankton models with ratio-dependent response functions and time delays. Chaos Solitons Fract. 173, 1–22 (2023)

    MathSciNet  Google Scholar 

  16. Macdonald, J.C., Gulbudak, H.: Forward hysteresis and hopf bifurcation in an NPZD model with application to harmful algal blooms. J. Math. Biol. 87, 1–35 (2023)

    MathSciNet  Google Scholar 

  17. Gao, M.M., Jiang, D.Q., Ding, J.Y.: Dynamical behavior of a nutrient-plankton model with Ornstein–Uhlenbeck process and nutrient recycling. Chaos Solitons Fract. 174, 1–27 (2023)

    MathSciNet  Google Scholar 

  18. Mandal, A., Biswas, S., Pal, S.: Toxicity-mediated regime shifts in a contaminated nutrient-plankton system. Chaos 33, 1–19 (2023)

    MathSciNet  Google Scholar 

  19. Liao, T.C.: The impact of plankton body size on phytoplankton–zooplankton dynamics in the absence and presence of stochastic environmental fluctuation. Chaos Solitons Fract. 154, 1–16 (2022)

    MathSciNet  Google Scholar 

  20. Liao, T.C.: Dynamics of interacting plankton induced by plankton body size in deterministic and stochastic environments. Chinese J. Phys. 77, 2724–2750 (2022)

    ADS  MathSciNet  Google Scholar 

  21. Harvey, H.W.: Note on selective feeding by Calanus. J. Mar. Biol. Ass. UK 22, 97–100 (1937)

    Google Scholar 

  22. Pal, J., Bhattacharya, S., Chattopadhyay, J.: Does predator go for size selection or preferential toxic-nontoxic species under limited resource. OnLine J. Biol. Sci. 10, 11–16 (2010)

    CAS  Google Scholar 

  23. Muller-Navarra, D.C., Brett, M.T., Liston, A., Goldman, C.R.: A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403, 74–77 (2000)

    ADS  CAS  PubMed  Google Scholar 

  24. Ravet, J.L., Brett, M.T.: Essential fatty acid and phytoplankton phosphorus content constraints on daphnia somatic growth and reproduction. Limnol. Oceanogr. 51, 2438–2452 (2006)

    ADS  CAS  Google Scholar 

  25. DeMott, W.R.: Optimal foraging theory as a predictor of chemically mediated food selection by suspension-feeding copepods. Limnol. Oceanography 34, 140–154 (1989)

    ADS  Google Scholar 

  26. Bairagi, N., Saha, S., Chaudhuri, S., Dana, S.K.: Zooplankton selectivity and nutritional value of phytoplankton influences a rich variety of dynamics in a plankton population model. Phys. Rev. E 99, 1–12 (2019)

    Google Scholar 

  27. Danielsdottir, M.G., Brett, M.T., Arhonditsis, G.B.: Phytoplankton food quality control of planktonic food web processes. Hydrobiologia 589, 29–41 (2007)

    Google Scholar 

  28. Zheng, Y.L., Gong, X., Gao, H.W.: Selective grazing of zooplankton on phytoplankton defines rapid algal succession and blooms in oceans. Ecol. Model. 468, 1–11 (2022)

    Google Scholar 

  29. Biswas, S., Tiwari, P.K., Kang, Y., Pal, S.: Effects of zooplankton selectivity on phytoplankton in an ecosystem affected by free-viruses and environmental toxins. Math. Bios. Eng. 17, 1272–1317 (2020)

    MathSciNet  Google Scholar 

  30. Biswas, S., Tiwari, P.K., Pal, S.: Effects of toxicity and zooplankton selectivity on plankton dynamics under seasonal patterns of viruses with time delay. Math. Method Appl. Sci. 45, 585–617 (2020)

    MathSciNet  Google Scholar 

  31. Zhao, S.N., Yuan, S.L., Wang, H.: Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation. J. Diff. Equ. 268, 5113–5139 (2020)

    ADS  MathSciNet  Google Scholar 

  32. Yu, X.W., Yuan, S.L., Zhang, T.H.: The effects of toxin-producing phytoplankton and environmental fluctuations on the planktonic blooms. Nonlinear Dyn. 91, 1653–1668 (2018)

    Google Scholar 

  33. May, R.: Stability and Complexity in Model Ecosystem. Princeton University Press, Princeton (2001)

    Google Scholar 

  34. Yu, X.W., Yuan, S.L., Zhang, T.H.: Survival and ergodicity of a stochastic phytoplankton–zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment. Appl. Math. Comput. 347, 249–264 (2019)

    MathSciNet  Google Scholar 

  35. Zhao, S.N., Yuan, S.L., Zhang, T.H.: The impact of environmental fluctuations on a plankton model with toxin-producing phytoplankton and patchy agglomeration. Chaos Solitons Fract. 162, 112426 (2022)

    MathSciNet  Google Scholar 

  36. Liao, T.C.: Plankton growth dynamic driven by plankton body size in deterministic and stochastic environments. Math. Mathods Appl. Sci. 46, 2569–2601 (2023)

    ADS  MathSciNet  Google Scholar 

  37. Chen, Z.W., Tian, Z.Y., Zhang, S.W., Wei, C.J.: The stationary distribution and ergodicity of a stochastic phytoplankton–zooplankton model with toxin-producing phytoplankton under regime switching. Physica A 537, 122728 (2020)

    MathSciNet  Google Scholar 

  38. Chen, L.F., Yu, X.W., Yuan, S.L.: Effects of random environmental perturbation on the dynamics of a nutrient-phytoplankton–zooplankton model with nutrient recycling. Mathematics 10, 3787 (2022)

    Google Scholar 

  39. Camara, B.I., Yamapi, R., Mokrani, H.: Environmental stochastic effects on phytoplankton–zooplankton dynamics. Nonlinear Dyn. 96, 2013–2029 (2019)

    Google Scholar 

  40. Zhao, S.N., Yuan, S.L., Zhang, T.H.: Adaptive dynamics of a stoichiometric phosphorus–algae–zooplankton model with environmental fluctuations. J. Nonlinear Sci. 36, 1–61 (2022)

    MathSciNet  Google Scholar 

  41. Liu, Q., Jiang, D.Q., Hayat, T., Ahmad, B.: Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation. Appl. Math. Comput. 320, 226–239 (2018)

    MathSciNet  Google Scholar 

  42. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)

    Google Scholar 

  43. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Dynamics of a stochastic predator–prey model with stage structure for predator and Holling type II functional response. J. Nonlinear Sci. 28, 1151–1187 (2018)

    ADS  MathSciNet  Google Scholar 

  44. Cai, Y.L., Kang, Y., Wang, W.M.: A stochastic SIRS epidemic model with nonlinear incidence rate. Appl. Math. Comput. 305, 221–240 (2017)

    MathSciNet  Google Scholar 

  45. Zhang, S.Q., Duan, X.C., Zhang, T.H., Yuan, S.L.: Controlling biological invasions: a stochastic host-generalist parasitoid model. Bull. Math. Biol. 85, 1–31 (2023)

    MathSciNet  Google Scholar 

  46. Liu, M., Wang, K., Wu, Q.: Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull. Math. Biol. 73, 1969–2012 (2011)

    MathSciNet  PubMed  Google Scholar 

  47. Has’minskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Alphen aan den Rijn (1980)

    Google Scholar 

  48. Murdoch, W.W., Nisbet, R.M., McCauley, E., DeRoos, A.M., Gurney, W.S.C.: Plankton abundance and dynamics across nutrient levels: tests of hypotheses. Ecology 79, 1339–1356 (1998)

    Google Scholar 

  49. Genkai-Kato, M., Yamamura, N.: Unpalatable prey resolves the paradox of enrichment. Proc. R. Soc. Lond. 266, 1215–1219 (1999)

    Google Scholar 

  50. Roy, S., Alam, S., Chattopadhyay, J.: Competing effects of toxin-producing phytoplankton on overall plankton populations in the bay of Bengal. Bull. Math. Biol. 68, 2303–2320 (2006)

    MathSciNet  PubMed  Google Scholar 

  51. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    ADS  MathSciNet  Google Scholar 

  52. Bao, J., Mao, X., Yin, G., Yuan, C.: Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Anal. 74, 6601–6616 (2011)

    MathSciNet  Google Scholar 

  53. Tembo, R.: The impact of ocean acidification on aquatic organisms. J. Environ. Anal. Toxicol. 7, 1–5 (2017)

    Google Scholar 

  54. Danane, J.: Stochastic predator–prey levy jump model with Crowley–Martin functional response and stage structure. J. Appl. Math. Comput. 67, 41–67 (2021)

    MathSciNet  Google Scholar 

  55. Sajan, K.K., Choudhary, K.K., Dubey, B.: A non-autonomous approach to study the impact of environmental toxins on nutrient-plankton system. Appl. Math. Comput. 458, 128236 (2023)

    MathSciNet  Google Scholar 

  56. Chaturvedi, D., Misra, O.P.: Modeling impact of varying ph due to carbondioxide on the dynamics of prey–predator species system. Nonlinear Anal. Real 46, 374–402 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Science Foundation Project of Jiangsu Provincial Department of Education, Jiangsu Province, China(21KJD110005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiancai Liao.

Ethics declarations

Declaration of Interest Statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, T. Stochastic dynamics of a plankton model with zooplankton selectivity and nutritional value of phytoplankton. J. Appl. Math. Comput. 70, 251–283 (2024). https://doi.org/10.1007/s12190-023-01959-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01959-4

Keywords

Navigation