Log in

Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose two new approximation methods on a general mesh for the generalized Caputo fractional derivative of order \(\alpha \in (0,1).\) The accuracy of these two methods is shown to be of order \((3-\alpha )\) which improves some previous work done to date. To demonstrate the accuracy and usefulness of the proposed approximations, we carry out experiment on test examples and apply these approximations to solve generalized fractional sub-diffusion equations. The numerical results indicate that the proposed methods perform well in practice. Our contributions lie in two aspects: (i) we propose high order approximations that work on a general mesh; (ii) we establish the well-posedness of generalized fractional sub-diffusion equations and develop numerical schemes using the new high order approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Google Scholar 

  2. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Netherlands (2006)

    Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  5. Povstenko, Y.: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhauser, New York (2015)

    Google Scholar 

  6. Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    MathSciNet  Google Scholar 

  7. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)

    MathSciNet  Google Scholar 

  8. Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    MathSciNet  Google Scholar 

  9. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    MathSciNet  Google Scholar 

  10. Li, C., Wu, R., Ding, H.: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equation. Commun. Appl. Ind. Math. 7, 536 (2015)

    MathSciNet  Google Scholar 

  11. Cao, J.X., Li, C.P., Chen, Y.Q.: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 18(3), 735–761 (2015)

    MathSciNet  Google Scholar 

  12. Li, H., Cao, J., Li, C.: High-order approximation to Caputo derivatives and caputo-type advection-diffusion equations (III). J. Comput. Appl. Math. 299, 159–175 (2016)

    MathSciNet  Google Scholar 

  13. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  Google Scholar 

  14. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240(1), 36–48 (2013)

    MathSciNet  Google Scholar 

  15. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2015)

    MathSciNet  Google Scholar 

  16. Gao, G., Sun, H., Sun, Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)

    MathSciNet  Google Scholar 

  17. Ji, C.C., Sun, Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64(3), 959–985 (2015)

    MathSciNet  Google Scholar 

  18. Ji, C.C., Sun, Z.: The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269, 775–791 (2015)

    MathSciNet  Google Scholar 

  19. Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 70(4), 573–591 (2015)

    MathSciNet  Google Scholar 

  20. **, B., Li, B., Zhou, Z.: An analysis of the Crank–Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518–541 (2018)

    MathSciNet  Google Scholar 

  21. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method. Eng. Anal. Bound. Elem. 38, 72–82 (2014)

    MathSciNet  Google Scholar 

  22. **, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), 146–170 (2016)

    MathSciNet  Google Scholar 

  23. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    MathSciNet  Google Scholar 

  24. Yaseen, M., Abbas, M., Nazir, T., Baleanu, D.: A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation. Adv. Differ. Equ. 274, 18 (2017)

    MathSciNet  Google Scholar 

  25. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    MathSciNet  Google Scholar 

  26. Zeng, F.: Second-order stable finite difference schemes for the time-fractional diffusion-wave equation. J. Sci. Comput. 65, 411–430 (2015)

    MathSciNet  Google Scholar 

  27. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    MathSciNet  Google Scholar 

  28. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)

    MathSciNet  Google Scholar 

  29. Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52(4), 413–425 (1988)

    MathSciNet  Google Scholar 

  30. Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64(4), 707–720 (2013)

    MathSciNet  Google Scholar 

  31. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    MathSciNet  Google Scholar 

  32. Wang, Z., Vong, S.: A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation. Int. J. Comput. Math. 92, 970–979 (2015)

    MathSciNet  Google Scholar 

  33. Agrawal, O.P.: Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal. 15(4), 700–711 (2012)

    MathSciNet  Google Scholar 

  34. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    MathSciNet  Google Scholar 

  35. Tawfik, A.M., Abdelhamid, H.M.: Generalized fractional diffusion equation with arbitrary time varying diffusivity. Appl. Math. Comput. 410, 126449 (2021)

    MathSciNet  Google Scholar 

  36. Ding, Q., Wong, P.J.Y.: A higher order numerical scheme for generalized fractional diffusion equations. Int. J. Numer. Methods Fluids 92(12), 1866–1889 (2020)

    MathSciNet  Google Scholar 

  37. Ding, Q., Wong, P.J.Y.: A new approximation for the generalized fractional derivative and its application to generalized fractional diffusion equation. Numer. Methods Partial Differ. Equ. 37(1), 643–673 (2021)

    MathSciNet  Google Scholar 

  38. Li, X., Wong, P.J.Y.: A gWSGL numerical scheme for generalized fractional sub-diffusion problems. Commun. Nonlinear Sci. Numer. Simul. 82, 104991 (2020)

    MathSciNet  Google Scholar 

  39. Li, X., Wong, P.J.Y.: Generalized Alikhanov’s approximation and numerical treatment of generalized fractional sub-diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 97, 105719 (2021)

    MathSciNet  Google Scholar 

  40. Xu, Y., He, Z., Agrawal, O.P.: Numerical and analytical solutions of new generalized fractional diffusion equation. Comput. Math. Appl. 66, 2019–2029 (2013)

    MathSciNet  Google Scholar 

  41. Xu, Y., He, Z., Xu, Q.: Numerical solutions of fractional advection-diffusion equations with a kind of new generalized fractional derivative. Int. J. Comput. Math. 91, 588–600 (2014)

    MathSciNet  Google Scholar 

  42. Li, X., Wong, P.J.Y.: gL1 scheme for solving a class of generalized time-fractional diffusion equations. Mathematics 10, 1219 (2022)

    Google Scholar 

  43. Kopteva, N.: Error analysis for time-fractional semilinear parabolic equations using upper and lower solutions. SIAM J. Numer. Anal. 58(4), 2212–2234 (2020)

    MathSciNet  Google Scholar 

  44. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    MathSciNet  Google Scholar 

  45. Kubica, A., Yamamoto, M.: Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients. Fract. Calc. Appl. Anal. 21(2), 276–311 (2018)

    MathSciNet  Google Scholar 

  46. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    MathSciNet  Google Scholar 

  47. Liao, H.-L., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. IMA J. Numer. Anal. 57(1), 218–237 (2019)

    Google Scholar 

  48. Liao, H.-L., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. Commun. Comput. Phys. 30(2), 567–601 (2021)

    MathSciNet  Google Scholar 

  49. Li, X., Wong, P.J.Y.: Numerical solutions of fourth-order fractional sub-diffusion problems via parametric quintic spline. ZAMM Z. Angew. Math. Mech. 99(5), 201800094 (2019)

    MathSciNet  Google Scholar 

  50. Kopteva, N.: Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem. Math. Comput. 90(327), 19–40 (2021)

    MathSciNet  Google Scholar 

Download references

Funding

The research of Xuhao Li was supported by Anhui Provincial Natural Science Foundation (Grant No. 2208085QA02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia J. Y. Wong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wong, P.J.Y. Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations. J. Appl. Math. Comput. 69, 4689–4716 (2023). https://doi.org/10.1007/s12190-023-01944-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01944-x

Keywords

Mathematics Subject Classification

Navigation