Log in

Optimal control using linear feedback control and neutralizing antibodies for an HIV model with dynamical analysis

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

HIV (human immunodeficiency virus) is a dangerous virus that constantly diminishes an individual’s immune system by explicitly targeting CD4 cells, which are the body’s key protectors against disease by obstructing them to make duplicates of themselves. If left untreated, it can lead to AIDS (acquired immunodeficiency syndrome). The Treatment involves antiretroviral therapy which maintains the immunity to a specific level and thus helps in suppressing the virus replication. This paper emphasizes on the development of the model involving healthy and infected population, virus population, antibodies and CTL cells. The investigation encapsulates the local stability based on thresholds followed by the local bifurcation analysis based on \(\beta _1\) and \(R_0\). The global stability analysis is done the using Graph- theoretic approach. Further the optimal control problem is discussed using Linear feedback control method which aims to reduce the viral load by kee** antibodies to a certain level. Numerical discussion includes surface plots of the thresholds based on various parameters, graphs showing the comparison between without control and with control especially for the virus population, infected population and antibodies which are our target. Finally, we have also shown the curve-fitting for our data using optimized Nedlar-Mean algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aditya, N.M., Puneet, S.K., Kshitija, H.K.: Simple linear regression with least square estimation: an overview. Int. J. Comput. Sci. Inf. Technol. 7, 2394–2396 (2016)

    Google Scholar 

  2. Allali, K., Meskaf, A., Tridane, A.: Mathematical modeling of the adaptive immune responses in the early stage of the HBV infection. Int. J. Differ. Equ. 2018, 28 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Allali, K., Tabit, Y., Harroudi, S.: On HIV model with sdaptive immune response, two saturated rates and therapy. Math. Model. Nat. Phenom. 12, 1–14 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Amalesh, M.K., Dasi, A.: Bifurcation analysis of an SIR model. Commun. Appl. Anal. 20, 317–323 (2016)

    Google Scholar 

  5. Arnaout, R.A., Wodarz, D.: HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing. Proc. R. Soc. Lond. B Biol. Sci. 267, 1347–1354 (2000)

    Google Scholar 

  6. Bakare, E.A., Nwagwo, A., Danso-Addo, E.: Optimal control analysis of an SIR epidemic model with constant recruitment, International Journal of Applied. Math. Res. 3, 273–285 (2014)

    Google Scholar 

  7. Barati, R.: Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. J. Hydrol. Eng. 16, 946–954 (2011)

    Google Scholar 

  8. Barik, M., Chauhan, S., Bhatia, S.K., Misra, O.P.: Understanding role of CTL cells and antibodies on a delayed HIV mathematical model: a dynamical analysis. Math. Eng. Sci. Aerosp. 12, 109–123 (2021)

    Google Scholar 

  9. Barik, M., Swarup, C., Singh, T., HAbbi, S., Chauhan, S.: Dynamical analysis, optimal control and spatial pattern in an influenza model with adaptive immunity in two stratified population. AIMS Math. 7, 4898–4935 (2022)

    MathSciNet  Google Scholar 

  10. Burg, D., Rong, L., Neumann, A.U., Dahari, H.: Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection. J. Theor. Biol. 259, 751–759 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Ciupe, S.M., Riberio, R.M., Nelson, P.W., Perelson, A.S.: Modelling the mechanism of acute hepatitis B virus infection. J. Theor. Biol. 247, 23–35 (2009)

    Google Scholar 

  12. Ciupe, S.M., Riberio, R.M., Nelson, P.W., Dusheiko, G., Perelson, A.S.: The role of cells refractory to productive infection in acute hepatitis B viral dynamics. Proc United States of America 104, 5050–5057 (2007)

    Google Scholar 

  13. Ciupe, S.M., Riberio, R.M., Perelson, A.S.: Antibody responses during hepatitis B viral infection. PLoS Comput. Biol. 10, 1–16 (2014)

    Google Scholar 

  14. Cohen, Y.Z., Caskey, M.: Broadly neutralizing antibodies for treatment and prevention of HIV-1 infection. Curr. Opin. Biotechnol. 13, 366–373 (2018)

    Google Scholar 

  15. Davenport, M.P., Ribeiro, R.M., Zhang, L., Wilson, D.P., Perelson, A.S.: Understanding the mechanisms and limitations of immune control of HIV. Immunol. Rev. 216, 164–175 (2007)

    Google Scholar 

  16. David, M., Margolis, D.M., Koup, R.A., Ferrari, G.: HIV antibodies for treatment of HIV infection. Immunol. Rev. 275, 313–323 (2017)

    Google Scholar 

  17. De Boer, R.J., Perelson, A.S.: Target cell limited and immune control models of HIV infection: a comparison. J. Theor. Biol. 190, 201–214 (1998)

    Google Scholar 

  18. Gaff, H., Schaefer, E.: Optimal control applied to vaccination and treatment strategies for various epidemiological models. Math. Biosci. Eng. 6, 469–492 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Global HIV Statistics, Communications and Global Advocacy, (2016) Fact sheet—UNAIDS https://www.unaids.org

  20. Gourley, S.A., Kaung, Y., Nagy, J.D.: Dynamics of a delay differential equation model of hepatitis B virus infection. J. Biol. Dyn. 2, 140–153 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Ghosh, B., Kar, T.K.: Sustainable use of prey species in a prey-predator system: jointly determined ecological thresholds and economic trade-offs. Ecol. Model. 272, 49–58 (2014)

    Google Scholar 

  22. Gulati, P., Chauhan, S., Mubayi, A., Singh, T., Rana, P.: Dynamical analysis, optimum control and pattern formation in the biological pest(EFSB) control model. Chaos Solitons Fractals 147, 110920 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Guo, H., Li, M.Y., Shuai, Z.: A graph-theoretic approach to the method of global Lyapunov functions. Proc. Am. Math. Soci. 136, 2793–2802 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Hamilton, F.: Parameter estimation in differential equations: a numerical study of shooting methods. SIAM Undergrad. Res. Online 4, 1 (2011)

    Google Scholar 

  25. Hews, S., Eikenberry, S., Nagy, J.D., Kaung, Y.: Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. J. Math. Biol. 60, 573–590 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Kar, T.K., Ghosh, B.: Sustainability and optimal control of an exploited prey predator system through provision of alternative food to predator. Biosystems 109, 220–232 (2012)

    Google Scholar 

  27. Li, M.Y., Shuai, Z.: Global-stability problem for coupled systems of differential equations on networks. J. Differ. Eq. 248, 1–20 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Mahardika, R., Sumanto, Y.D.: Routh-hurwitz criterion and bifurcation method for stability analysis of tuberculosis transmission model. J. Phys. Conf. Series 1217, 012056 (2019)

    Google Scholar 

  29. Mbogo, W.R., Luboobi, L.S., Odhiambo, J.: Stochastic model for in-host HIV dynamics with therapeutic intervention. ISRN Biomath. 2013, 1–11 (2013)

    MATH  Google Scholar 

  30. Michalopoulos, G.K., DeFrances, D.C.: Liver regeneration. Science 276, 60–65 (1997)

    Google Scholar 

  31. Morisa, A., Pereiraa, M., Chakrabarti, L.: A role for antibodies in natural HIV control. Curr. Opin. Biotechnol. 14, 265–272 (2019)

    Google Scholar 

  32. Nagumo, M.: Uber die Lage der Integralkurven gew onlicher differentialgleichungen. Proc. Phys. Math. Soc. Jpn. 24, 551–559 (1942)

    MATH  Google Scholar 

  33. Nampala, H., Luboobi, L.S., Mugisha, J.Y., Obua, C.: Mathematical modeling of liver enzyme elevation in HIV mono-infection. Mathematical Biosciences 242, 77–85 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Nowak, M.A., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  35. Overview:Data & Trends:Global:HIV Statistics, HIV.gov(2020)

  36. Ogunlaran, O.M., OukouomiNoutchie, S.C.: Mathematical model for an effective management of HIV infection, BioMed Research International, 2016 (2016)

  37. Perko, L.: Differential Equations and Dynamical Systems. International Journal for Theory, Real World Modelling and Simulations, 20, 3rd edn. New York, NY, USA (2001)

  38. Rafiko, M.: Mathematical modelling of the biological pest control of the sugarcane borer. Int. J. Comput. Math. 89, 390–401 (2012)

    MathSciNet  Google Scholar 

  39. Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: a generalized smoothing approach, series B statistical methodology. J. Royal Stat. Soc. 69, 741–796 (2007)

    MATH  Google Scholar 

  40. Shuai, Z., Driessche, V.D.: Global stability of infectious disease models using Lyapunov functions. SIAM J. Appl. Math. 73, 1513–1532 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Wang, Y., Zhou, Y., Brauer, F., Heffernan, J.M.: Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J. Math. Biol. 67, 901–934 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Whalley, S.A., Murray, J.M., Brown, D.: Kinetics of acute hepatitis b virus infection in humans. J. Exp. Med. 193, 847–853 (2001)

    Google Scholar 

  43. Wilson, D.P., Law, M.G., Grulich, A.E., Cooper, D.A., Kaldor, J.M.: Relation between HIV viral load and infectiousness: a model-based analysis. Lancet 372, 314–320 (2008)

    Google Scholar 

  44. Yusuf, T.T., Benyah, F.: Optimal strategy for controlling the spread of HIV/AIDS disease: a case study of South Africa. J. Biol. Dyn. 6, 475–494 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Zhou, X., Shi, X., Zhang, Z., Song, X.: Dynamical behavior of a virus dynamics model with CTL immune response. Appl. Math. Comput. 213, 329–347 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, M., Chauhan, S., Misra, O.P. et al. Optimal control using linear feedback control and neutralizing antibodies for an HIV model with dynamical analysis. J. Appl. Math. Comput. 68, 4361–4389 (2022). https://doi.org/10.1007/s12190-022-01710-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01710-5

Keywords

Mathematics Subject Classification

Navigation