Log in

Numerical framework for the Caputo time-fractional diffusion equation with fourth order derivative in space

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A finite difference scheme along with a fourth-order approximation is examined in this article for finding the solution of time-fractional diffusion equation with fourth-order derivative in space subject to homogeneous and non-homogeneous boundary conditions. Caputo fractional derivative is used to describe the time derivative. The time-fractional diffusion equation of order \(0< \gamma < 1\) is transformed into Volterra integral equation which is then approximated by linear interpolation. A novel numerical scheme based on fractional trapezoid formula for time discretization followed by Stephenson’s scheme to discretize the fourth order space derivative is developed for the linear diffusion equation. Afterward, convergence and stability are investigated thoroughly showing that the proposed scheme is unconditionally stable and hold convergence accuracy of order \(O(\tau ^{2}+h^{4})\). The numerical examples are presented in accordance with the theoretical results showing the efficiency and accuracy of the presented numerical technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baskonus, H.M., Mekkaoui, T., Hammouch, Z., Bulut, H.: Active control of a chaotic fractional order economic system. Entropy 17, 5771–5783 (2015)

    Article  Google Scholar 

  2. Baskonus, H.M., Bulut, H.: Regarding on the prototype solutions for the nonlinear fractional-order biological population model. In: AIP Conf Proc (2016)

  3. Losada, J., Nieto, J.J.: Fractional integral associated to fractional derivatives with nonsingular Kernels. Progr. Fract. Differ. Appl. 7(3), 137–143 (2021)

    Google Scholar 

  4. Caputo, M., Fabrizio, M.: On the Singular kernels for fractional derivatives. Some applications to partial differential equations. Progr. Fract. Differ. Appl. 7(2), 79–82 (2021)

    Article  Google Scholar 

  5. Veeresha, P., Baskonus, H.M., Gao, W.: Strong interacting internal waves in rotating ocean: novel fractional approach. Axioms 10, 123 (2021)

    Article  Google Scholar 

  6. Scher, H., Montroll, E.W.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12(6), 2455–2477 (1975)

    Article  Google Scholar 

  7. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)

  8. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15 (1997)

    Article  Google Scholar 

  9. Ren, L., Wang, Y.M.: A fourth-order extrapolated compact difference method for time-fractional convection–reaction–diffusion equations with spatially variable coefficients. Appl. Math. Comput. 312, 1–22 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Guo, X., Li, Y., Wang, H.: A fourth-order scheme for space fractional diffusion equations. J. Comput. Phys. 373, 410–424 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. **ng, Z., Wen, L.: Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations. Appl. Math. Comput. 346, 155–166 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Ran, M., Luo, T., Zhang, L.: Unconditionally stable compact theta schemes for solving the linear and semi-linear fourth-order diffusion equations. Appl. Math. Comput. 342, 118–129 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Luo, H., Zhang, Q.: Regularity of global attractor for the fourth-order reaction–diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 17, 3824–3831 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, G., Lu, S.: Unconditional stability of alternating difference schemes with intrinsic parallelism for two-dimensional fourth-order diffusion equation. Comput. Math. Appl. 71, 1944–1959 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, X., Zhang, H., Xu, D.: Orthogonal spline collocation method for the fourth-order diffusion system. Appl. Math. Comput. 75, 3172–3185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Soori, Z., Aminataei, A.: A new approximation to Caputo-type fractional diffusion and advection equations on non-uniform meshes. Appl. Numer. Math. 144, 21–41 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Macías-Díaz, J.E., Hendy, A.S., De Staelen, R.H.: A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations. Appl. Math. Comput. 325, 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Ran, M., Zhang, C.: New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order. Appl. Numer. Math. 129, 58–70 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zeid, S.S.: Approximation methods for solving fractional equations. Chaos Solitons Fractals 125, 171–193 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Manimaran, J., Shangerganesh, L., Debbouche, A., Antonov, V.: Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion. Front. Phys. 7, 93 (2019)

    Article  Google Scholar 

  22. Hu, X., Zhang, L.: A compact finite difference scheme for the fourth-order fractional diffusion-wave system. Comput. Phys. Commun. 182(10), 1645–1650 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhong, J., Liao, H., Ji, B., Zhang, L.: A fourth-order compact solver for fractional-in-time fourth-order diffusion equations. ar**v:1907.01708v1 [math.NA] (2019)

  24. Li, X., Wong, P.J.Y.: Numerical solutions of fourth-order fractional sub-diffusion problems via parametric quintic spline (2019). 10.1002/zamm.201800094

  25. Agrawal, O.P.: A general solution for the fourth-order fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 3, 1 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Agrawal, O.P.: A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain. Comput. Struct. 79, 1497 (2001)

    Article  Google Scholar 

  27. Jafari, H., Dehghan, M., Sayevand, K.: Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method. Numer. Methods Partial Differ. Equ. 24, 1115 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time fractional fourth-order problems. Appl. Math. Model. 38, 1511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Siddiqi, S.S., Arshed, S.: Numerical solution of time-fractional fourth-order partial differential equations. Int. J. Comput. Math. 92, 1496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhai, S., Feng, X.: Investigations on several compact ADI methods for the 2D time fractional diffusion equation. Numer. Heat Transf. Part B Fundam. 69(4), 364–376 (2015)

    Article  Google Scholar 

  32. Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equations. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gao, G.H., Sun, Z.Z.: A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the sub-diffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gao, G.H., Sun, Z.Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain super convergence. J. Comput. Phys. 280, 510–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vong, S., Wang, Z.: High order difference schemes for a time-fractional differential equation with Neumann boundary conditions. East Asian J. Appl. Math. 4, 222–241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao, L., Deng, W.: A series of high order quasi-compact schemes for space fractional diffusion equations based on the super convergent approximations for fractional derivatives. Numer. Methods Partial Differ. Equ. 31, 1345–1381 (2015)

    Article  MATH  Google Scholar 

  42. Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang, J., Yang, D.: A unified difference-spectral method for time-space fractional diffusion equations. Int. J. Comput. Math. 94(6), 1172–1184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Dison, J., Mekee, S.: Weakly singular discrete Gronwall inequalities. Z. Angew. Math. Mech. 66, 535–544 (1986)

    Article  MathSciNet  Google Scholar 

  45. Huang, J.F., Tang, Y.F., Väzquez, L.: Convergence analysis of a block-by-block method for fractional differential equations. Numer. Math. Theor. Methods Appl. 5, 229–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Cui, M.: Compact difference scheme for time-fractional fourth-order equation with the first Dirichlet boundary conditions. East Asian J. Appl. Math. 9, 45–66 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ben-Artzi, M., Croisille, J.P., Fishelov, D.: A fast direct solver for the biharmonic problem in a rectangular grid. SIAM J. Sci. Comput. 31, 303–333 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Fishelov, D., Ben-Artzi, M., Croisille, J.-P.: Recent advances in the study of a fourth-order compact scheme for the one-dimensional biharmonic equations. J. Sci. Comput. 53, 55–79 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Thomas, J.W.: Numerical Partial Differential Equations (Finite Difference Methods), Texts in Applied Mathematics, vol. 22. Springer, New York (1995)

    Book  Google Scholar 

  50. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 11701502).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, S., Wali, M., Huang, J. et al. Numerical framework for the Caputo time-fractional diffusion equation with fourth order derivative in space. J. Appl. Math. Comput. 68, 3295–3316 (2022). https://doi.org/10.1007/s12190-021-01635-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01635-5

Keywords

Mathematics Subject Classification

Navigation