Log in

A structure-preserving finite element discretization for the time-dependent Nernst-Planck equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

It is still a challenging task to get a satisfying numerical solution to the time-dependent Nernst-Planck (NP) equation, which satisfies the following three physical properties: solution nonnegativity, total mass conservation, and energy dissipation. In this work, we propose a structure-preserving finite element discretization for the time-dependent NP equation combining a reformulated Jordan-Kinderlehrer-Otto (JKO) scheme and Scharfetter-Gummel (SG) approximation. The JKO scheme transforms a partial differential equation solution problem into an optimization problem. Our finite element discretization strategy with the SG stabilization technique and the Fisher information regularization term in the reformulated JKO scheme can guarantee the convexity of the discrete objective function in the optimization problem. In this paper, we prove that our scheme can preserve discrete solution nonnegativity, maintain total mass conservation, and preserve the decay property of energy. These properties are all validated with our numerical experiments. Moreover, the later numerical results show that our scheme performs better than the traditional Galerkin method with linear Lagrangian basis functions in kee** the above physical properties even when the convection term is dominant and the grid is coarse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows: in metric spaces and in the space of probability measures. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Brezzi, F., Marini, L.D., Pietra, P.: Numerical simulation of semiconductor devices. Comput. Methods Appl. Mech. Eng. 75(1–3), 493–514 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunk, M., Kværnø, A.: Positivity preserving discretization of time dependent semiconductor drift-diffusion equations. Appl. Num. Math. 62(10), 1289–1301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buturla, E., Cottrell, P., Grossman, B., Salsburg, K.: Finite-element analysis of semiconductor devices: the fielday program. IBM J. Res. Develop. 25(4), 218–231 (1981)

    Article  Google Scholar 

  5. Cancès, C., Gallouët, T.O., Todeschi, G.: A variational finite volume scheme for Wasserstein gradient flows. Numerische Mathematik 146(3), 437–480 (2020)

  6. Carlen, E.A., Gangbo, W.: Constrained steepest descent in the 2-Wasserstein metric. Annals of mathematics pp. 807–846 (2003)

  7. Carlier, G., Poon, C.: On the total variation Wasserstein gradient flow and the tv-jko scheme. ESAIM: Control, Optimisation and Calculus of Variations 25, 42 (2019)

  8. Chow, S.N., Dieci, L., Li, W., Zhou, H.: Entropy dissipation semi-discretization schemes for Fokker-Planck equations. J. Dynam. Diff. Eq. 31(2), 765–792 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156(1–4), 185–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Codina, R., Blasco, J.: Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales. Comput. Visual. Sci. 4(3), 167–174 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, J., Wang, Z., Zhou, S.: Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interactions: application to slit-shaped nanopore conductance. J. Comput. Phys. 397, 108864 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erbar, M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Annales de l’IHP Probabilités et statistiques 46, 1–23 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Evans, L.C., Gangbo, W.: Differential equations methods for the monge-kantorovich mass transfer problem (653) (1999)

  14. Flavell, A., Machen, M., Eisenberg, B., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson-Nernst-Planck equations. J. Comput. Electron. 13(1), 235–249 (2014)

    Article  Google Scholar 

  15. Gao, H., Sun, P.: A linearized local conservative mixed finite element method for poisson-nernst-planck equations. J. Sci. Comput. 77(2), 793–817 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gianazza, U., Savaré, G., Toscani, G.: The Wasserstein gradient flow of the fisher information and the quantum drift-diffusion equation. Arch. Rat. Mech. Anal. 194(1), 133–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson-Nernst-Planck system. Appl. Math. Comput. 287, 214–223 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, J., Huang, X.: A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations. Numerische Mathematik pp. 1–39 (2020)

  19. John, V., Mitkova, T., Roland, M., Sundmacher, K., Tobiska, L., Voigt, A.: Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Eng. Sci. 64(4), 733–741 (2009)

    Article  Google Scholar 

  20. John, V., Schmeyer, E.: Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198(3–4), 475–494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Knopp, T., Lube, G., Rapin, G.: Stabilized finite element methods with shock capturing for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 191(27–28), 2997–3013 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, W.: Transport information geometry i: Riemannian calculus on probability simplex. ar**v preprint ar**v:1803.06360 (2018)

  24. Li, W., Lu, J., Wang, L.: Fisher information regularization schemes for Wasserstein gradient flows. J. Comput. Phys. 416, 109449 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, W., Ryu, E.K., Osher, S., Yin, W., Gangbo, W.: A parallel method for earth movers distance. J. Sci. Comput. 75(1), 182–197 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, W., Yin, P., Osher, S.: Computations of optimal transport distance with Fisher information regularization. J. Sci. Comput. 75(3), 1581–1595 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, C., Wang, C., Wise, S.M., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. ar**v preprint ar**v:2009.08076 (2020)

  28. Liu, H., Maimaitiyiming, W.: Effcient, positive, and energy stable schemes for multi-d Poisson-Nernst-Planck systems. Journal of Scientic Computing 87(3), 1–36 (2021)

  29. Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson-Nernst-Planck equations. J. Comput. Phys. 268, 363–376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, H., Wang, Z.: A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems. J. Comput. Phys. 328, 413–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, H., Wang, Z., Yin, P., Yu, H.: Positivity-preserving third order DG schemes for Poisson–Nernst–Planck equations. ar**v preprint ar**v:2102.00101 (2021)

  32. Metti, M.S., Xu, J., Liu, C.: Energetically stable discretizations for charge transport and electrokinetic models. J. Comput. Phys. 306, 1–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation (2001)

  34. Roux, B., Allen, T., Bernche, S., Im, W.: Theoretical and computational models of biological ion channels. Quart. Rev. Biophys. 37(1), 15 (2004)

    Article  Google Scholar 

  35. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16(1), 64–77 (1969)

    Article  Google Scholar 

  36. Tu, B., Bai, S., Lu, B., Fang, Q.: Conic shapes have higher sensitivity than cylindrical ones in nanopore DNA sequencing. Sci. Rep. 8(1), 1–11 (2018)

    Google Scholar 

  37. Tu, B., Chen, M., **e, Y., Zhang, L., Eisenberg, R.S., Lu, B.: A parallel finite element simulator for ion transport through three-dimensional ion channel systems. J. Comput. Chem. 34(24), 2065–2078 (2013)

    Article  Google Scholar 

  38. Tu, B., **e, Y., Zhang, L., Lu, B.: Stabilized finite element methods to simulate the conductances of ion channels. Comput. Phys. Commun. 188, 131–139 (2015)

    Article  MATH  Google Scholar 

  39. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Q., Li, H., Zhang, L., Lu, B.: A stabilized finite element method for the Poisson-Nernst-Planck equations in three-dimensional ion channel simulations. Appl. Math. Lett. 111, 106652 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, J., Lu, B., Zhang, L.: A time-dependent finite element algorithm for simulations of ion current rectification and hysteresis properties of 3D nanopore system. IEEE Trans. Nanotechnol. 17(3), 513–519 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of Ministry of Science and Technology under Grant 2016YFB0201304; the China NSF under Grants 11771435 and 22073110; Strategic Priority Research Program of the Chinese Academy of Sciences under Grant XDB36000000; National Natural Science Foundation under Grant 32027801.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Tu or Benzhuo Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Tu, B., Fang, Q. et al. A structure-preserving finite element discretization for the time-dependent Nernst-Planck equation. J. Appl. Math. Comput. 68, 1545–1564 (2022). https://doi.org/10.1007/s12190-021-01571-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01571-4

Keywords

Navigation