Log in

Impact of the impulsive releases and Allee effect on the dispersal behavior of the wild mosquitoes

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We develop a mathematical model of the wild mosquito dispersal with impulsive releases of the sterile mosquitoes and obtain a threshold condition that determines the eradication and uniform persistence of the wild mosquitoes using Floquet theory and impulsive comparison theorem. The effect of the dispersal rate on dynamics is investigated by means of numerical simulation. Additionally, we investigate a three-dimensional dispersal model of mosquitoes with impulsive state feedback control to effectively control the abundance of the wild mosquitoes below the acceptable level when the density of the wild mosquitoes reaches a certain threshold. Dynamics of such state-dependent control is also presented by applying numerical simulations since it is difficult to implement theoretical analysis. Finally, a brief discussion is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mbanzulu, Kennedy M., Mboera, Leonard E. G., Luzolo, Flory K., Wumba, Roger, Misinzo, Gerald, Kimera, Sharadhuli I.: Mosquito-borne viral diseasesin the Democratic Republic of the Congo: a review. Mbanzulu et al. Parasites Vectors, (2020) 13:103-114

  2. Zhang, **anghong, Tang, Sanyi, Cheke, Robert A.: Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control. Nonlinear Anal. Real World Appl. 22, 236–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Qi, Ruifeng, Zhang, Ling, Chi, Chengwu: Biological characteristics of dengue virus and potential targets for drug design. Acta Biochimica et Biophysica Sinica 40, 91–101 (2008)

    Article  Google Scholar 

  4. Li, Jia: Differential equations models for interacting wild and transgenic mosquito populations. J Biol. Dyn. 2, 241–258 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Strugarek, Martin, Bossin, Herv, Dumont, Yves: On the use of the sterile insect release technique to reduce or eliminate mosquito populations. Appl. Math. Model. 68, 443–470 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, Yazhi, Liu, **anning: A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population. J Theor. Biol. 448, 53–65 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rafikov, M., Bevilacqua, L., Wyse, A.P.P.: Optimal control strategy of malaria vector using genetically modified mosquitoes. J Theor. Biol. 258, 418–425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carvalho, Danilo Oliveira, Costa-da-Silva, André Luis, Susan Lees, Rosemary, Lara Capurro, Margareth: Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases. Acta Tropica, 132S (2014) S170-S177

  9. Ghosh, A.K., Ribolla, P.E.M., Jacobs-Lorena, M.: Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proceed. Nat. Acad. Sci. United States of Am. 98, 13278–13281 (2001)

    Article  Google Scholar 

  10. Li, Jia: New revised simple models for interactive wild and sterile mosquito populations and their dynamics. J Biol. Dyn. 11, 316–333 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haramboure, Marion, Labbé, Pierrick, Baldet, Thierry, et al.: Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment. Ecol. Model. 424, 109002–109023 (2020)

    Article  Google Scholar 

  12. Knipling, E.F.: Possibilities of insect control or eradication through the use of sexually sterile males. J Econ. Entomol. 48, 459–462 (1995)

    Article  Google Scholar 

  13. Cai, Liming, Ai, Shangbing, Li, Jia: Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J Appl. Math. 74, 1786–1809 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cai, Liming, Ai, Shangbing, Fan, Guihong: Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes. Math. Biosci. Eng. 15, 1181–1202 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Anguelov, Roumen, Dumont, Yves, Lubuma, Jean: Mathematical modeling of sterile insect technology for control of anopheles mosquito. Comput. Math. Appl. 64, 374–389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, Weike, **: Modeling the effects of augmentation strategies on the control of dengue fever with an impulsive differential equation. Bull. Math. Biol. 78, 1968–2010 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Jia: Simple mathematical models for interacting wild and transgenic mosquito populations. Math. Biosci. 189, 39–59 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jianshe, Yu., Li, Jia: Dynamics of interactive wild and sterile mosquitoes with time delay. J Biol. Dyn. 13, 606–620 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, Mugen, Luo, Jiaowan, Hud, Linchao, Zheng, Bo., Jianshe, Yu.: Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations. J Theor. Biol. 440, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  20. Li, Jia: Modeling of mosquitoes with dominant or recessive transgenes and Allee effects. Math. Biosci. Eng. 7, 101–123 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Linchao, Hu., Tang, Moxun, Zhongdao, Wu., **, Zhiyong, Jianshe, Yu.: The threshold infection level for Wolbachia invasion in random environments. J Differ. Equ. 266, 4377–4393 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jianshe, Yu.: Modelling mosquito population suppression based on delay differential equations. SIAM J Appl. Math. 78, 3168–3187 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Jia, Cai, Liming, Li, Yang: Stage-structured wild and sterile mosquito population models and their dynamics. J Biol. Dyn. 11, 79–101 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Adekunle, Adeshina I., Meehan, Michael T., McBryde, Emma S.: Mathematical analysis of a Wolbachia invasive model with imperfect maternal transmission and loss of Wolbachia infection. Infect. Disease Model. 4, 265–285 (2019)

    Article  Google Scholar 

  25. Xue, Shuyang, Li, Meili, Ma, Junling, Li, Jia: Sex-structured wild and sterile mosquito population models with different release strategies. Math. Biosci. Eng. 16, 1313–1333 (2019)

    Article  MathSciNet  Google Scholar 

  26. Wang, **a, Tang, Sanyi, Cheke, Robert A.: A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations. J Theor. Biol. 411, 27–36 (2016)

    Article  MATH  Google Scholar 

  27. Jianshe, Yu., Li, Jia: Global asymptotic stability in an interactive wild and sterile mosquito model. J Differ. Equ. 269, 6193–6215 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Hong, Georgescu, Paul, Zhang, Lai: Periodic patterns and Pareto efficiency of state dependent impulsive controls regulating interactions between wild and transgenic mosquito populations. Commun. Nonlinear Sci. Numer. Simul. 31, 83–107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Yazhi, Liu, **anning: An impulsive model for Wolbachia infection control of mosquito-borne diseases with general birth and death rate functions. Nonlinear Anal. Real World Appl. 37, 412–432 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Suxia, Dong, Hongsen, **axia, Xu., Shen, **aoqin: Analysis of a vector-borne disease model with impulsive perturbation and reinfection. J Elliptic and Parabol. Equ. 5, 359–381 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Jia, Ai, Shangbing: Impulsive releases of sterile mosquitoes and interactive dynamics with time delay. J Biol. Dyn. 14, 313–331 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huang, Mingzhan, Song, **nyu, Li, Jia: Modelling and analysis of impulsive releases of sterile mosquitoes. J Biol. Dyn. 11, 147–171 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ni, Wenjie, Wang, Mingxin: Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey. J Differ. Equ. 261, 4244–4274 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, Hongli, Zhang, Long, Teng, Zhidong, Jiang, Yaolin: A periodic single species model with intermittent unilateral diffusion in two patches. J Comput. Appl. Math. 53, 223–244 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hong, Wu., Wang, Yuanshi, Li, Yufeng, DeAngelis, Donald L.: Dispersal asymmetry in a two-patch system with source-sink populations. Theor. Popul. Biol. 131, 54–65 (2020)

    Article  MATH  Google Scholar 

  36. Wang, Yuanshi: Pollination-mutualisms in a two-patch system with dispersal. J Theor. Biol. 476, 51–61 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao, Zhong, Li, Qiuying, Chen, Lansun: Effect of rhizosphere dispersal and impulsive input on the growth of wetland plant. Math. Comput. Simul. 152, 69–80 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. He, Sha, Tang, Sanyi, Wang, Weiming: A stochastic SIS model driven by random diffusion of air pollutants. Physica A 532, 121759 (2019)

  39. Yang, Jiangli, Tang, Sanyi: Effects of population dispersal and impulsive control tactics on pest management. Nonlinear Anal. Hybrid Syst. 4, 487–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, You**, **ao, Yanni: The effects of population dispersal and pulse vaccination on disease control. Math. Comput. Model. 52, 1591–1604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dufourd, Claire, Dumont, Yves: Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control. Comput. Math. Appl. 66, 1695–1715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lutambi, Angelina M.: Mathematical modelling of mosquito dispersal for malaria vector control. Swiss Tropical and Public Health Institute, Doctoral Thesis, (2013)

  43. Mageni Lutambi, Angelina, Penny, Melissa A., Smith, Thomas, Chitnis, Nakul: Mathematical modelling of mosquito dispersal in a heterogeneous environment. Mathematical Biosciences, 241, 198-216 (2013)

  44. Yang, Cuihong, Zhang, **nan, Li, Jia: Dynamics of two-patch mosquito population models with sterile mosquitoes. J Math. Anal. Appl. 483, 123660–123676 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gordillo, Luis F.: Modeling ephemeral mating encounters in insects: The emergence of mate-finding Allee effects and applications to theoretical models of sterile release. Theor. Popul. Biol. 104, 10–16 (2015)

    Article  MATH  Google Scholar 

  46. Multerer, Lea, Smith, Thomas, Chitnis, Nakul: Modeling the impact of sterile males on an Aedes aegypti population with optimal control. Math. Biosci. 311, 91–102 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, Fang, Zhao, **aoqiang: A periodic epidemic model in a patchy environment. J Math. Anal. Appl. 325, 496–516 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Liao, **aoxin: Theory Method Appl. Stab. Huazhong University of Science and Technology Press, Wuhan (2010)

    Google Scholar 

  49. Samanta, G.P., Aíza, R.G., Sharma, S.: Analysis of a mathematical model of periodically pulsed chemotherapy treatment. Int. J Dyn. Control 5, 842–857 (2017)

    Article  MathSciNet  Google Scholar 

  50. Samanta, G.P., Aíza, R.G., Sharma, S.: Analysis of a delayed epidemic model of diseases through droplet infection and direct contact with pulse vaccination. Int. J Dyn. Control 3, 275–287 (2015)

    Article  MathSciNet  Google Scholar 

  51. Samanta, G.P., Aíza, R.G., Sharma, S.: Analysis of a Chlamydia epidemic model with pulse vaccination strategy in a random environment. Nonlinear Anal. Model. Control 23, 457–474 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The study is supported by the project of the Distinguished Professor of colleges and universities of Henan province in 2019 and the National Natural Science Foundation of China (No.12071407), the science and technology key project of Henan Province(212102310464) and the Major Commission Project of Industrial Innovation and Development Research in Zhumadian City under Grant 2020ZDWT05 and 2019ZDA01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Pang, L., Song, X. et al. Impact of the impulsive releases and Allee effect on the dispersal behavior of the wild mosquitoes. J. Appl. Math. Comput. 68, 1527–1544 (2022). https://doi.org/10.1007/s12190-021-01569-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01569-y

Keywords

Navigation