Log in

Ball convergence theorems for Halley’s method in Banach space

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We provide local convergence results for Halley’s method in order to approximate a locally unique zero of an operator in a Banach space setting using convex majorants. Kantorovich-type and Smale-type results are considered as applications and special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyros, I.K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Argyros, I.K.: On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169, 315–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Argyros, I.K.: Convergence and Application of Newton-Type Iterations. Springer, New York (2008)

    Google Scholar 

  4. Argyros, I.K.: A semilocal convergence analysis for directional Newton methods. Math. Comput. 80, 327–343 (2011)

    Article  MATH  Google Scholar 

  5. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s majorants principle for Newton’s method. Comput. Optim. Appl. 42, 213–229 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ferreira, O.P.: Convergence of Newton’s method in Banach space from the view of the majorant principle. IMA J. Numer. Anal. 29, 746–759 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hilliart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms, Part 1. Springer, Berlin (1993)

    Google Scholar 

  8. Kantorovich, L.V., Akilov, G.P.: Functional Analysis in Normed Spaces. Pergamon Press, Oxford (1982)

    Google Scholar 

  9. Nesterov, Y., Nemiroskii, A.: A Interior Point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  10. Ortega, J.M., Rheinbolt, W.C.: Iterative Solution of Nonlinear Equations in Servral Variables. Academic Press, New York (1970)

    Google Scholar 

  11. Proinov, P.D.: General local convergence theory for a class of iterative processes and its applications to Newton’s method. J. Complex. 25, 38–62 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Proinov, P.D.: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complex. 26, 3–42 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. Banach Cent. Publ. 3, 129–142 (1975)

    MathSciNet  Google Scholar 

  14. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R., Gross, K., Martin, C. (eds.) The Merging off Disciplines: New Directions in Pure, Applied and Computational Mathematics, pp. 185–196. Springer, New York (1986)

    Chapter  Google Scholar 

  15. Traub, J.F., Wozniakowski, H.: Convergence and complexity of Newton iteration for operator equation. J. Assoc. Comput. Mech. 26, 250–258 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wang, X.: Convergence on Newton’s method and inverse function theorem in Banach space. Math. Comput. 68, 169–186 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Argyros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyros, I.K., Ren, H. Ball convergence theorems for Halley’s method in Banach space. J. Appl. Math. Comput. 38, 453–465 (2012). https://doi.org/10.1007/s12190-011-0490-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-011-0490-3

Keywords

Mathematics Subject Classification (2000)

Navigation