Log in

A high-throughput detection method for the clonality of Human T-cell leukemia virus type-1-infected cells in vivo

  • Rapid Communication
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Approximately 10–20 million of Human T-cell leukemia virus type-1 (HTLV-1)-infected carriers have been previously reported, and approximately 5% of these carriers develop adult T-cell leukemia/lymphoma (ATL) with a characteristic poor prognosis. In Japan, Southern blotting has long been routinely performed for detection of clonally expanded ATL cells in vivo, and as a confirmatory diagnostic test for ATL. However, alternative methods to Southern blotting, such as sensitive, quantitative, and rapid analytical methods, are currently required in clinical practice. In this study, we developed a high-throughput method called rapid amplification of integration site (RAIS) that could amplify HTLV-1-integrated fragments within 4 h and detect the integration sites in > 0.16% of infected cells. Furthermore, we established a novel quantification method for HTLV-1 clonality using Sanger sequencing with RAIS products, and the validity of the quantification method was confirmed by comparing it with next-generation sequencing in terms of the clonality. Thus, we believe that RAIS has a high potential for use as an alternative routine molecular confirmatory test for the clonality analysis of HTLV-1-infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Doi K, Wu X, Taniguchi Y, Yasunaga J, Satou Y, Okayama A, et al. Preferential selection of human T-cell leukemia virus type I provirus integration sites in leukemic versus carrier states. Blood. 2005;106:1048–53.

    Article  CAS  Google Scholar 

  2. Artesi M, Marcais A, Durkin K, Rosewick N, Hahaut V, Suarez F, et al. Monitoring molecular response in adult T-cell leukemia by high-throughput sequencing analysis of HTLV-1 clonality. Leukemia. 2017;31:2532–5.

    Article  CAS  Google Scholar 

  3. Firouzi S, Lopez Y, Suzuki Y, Nakai K, Sugano S, Yamochi T, et al. Development and validation of a new high-throughput method to investigate the clonality of HTLV-1-infected cells based on provirus integration sites. Genome Med. 2014;6:46.

    Article  Google Scholar 

  4. Gillet NA, Malani N, Melamed A, Gormley N, Carter R, Bentley D, et al. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood. 2011;117:3113–222.

    Article  CAS  Google Scholar 

  5. Miyazato P, Katsuya H, Fukuda A, Uchiyama Y, Matsuo M, Tokunaga M, et al. Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome. Sci Rep. 2016;6:28324.

    Article  CAS  Google Scholar 

  6. Gabriel R, Eckenberg R, Paruzynski A, Bartholomae CC, Nowrouzi A, Arens A, et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med. 2009;15:1431–6.

    Article  CAS  Google Scholar 

  7. Paruzynski A, Arens A, Gabriel R, Bartholomae CC, Scholz S, Wang W, et al. Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc. 2010;5:1379–95.

    Article  CAS  Google Scholar 

  8. Tamiya S, Matsuoka M, Etoh K, Watanabe T, Kamihira S, Yamaguchi K, et al. Two types of defective human T-lymphotropic virus type I provirus in adult T-cell leukemia. Blood. 1996;88:3065–73.

    Article  CAS  Google Scholar 

  9. Kuramitsu M, Okuma K, Yamagishi M, Yamochi T, Firouzi S, Momose H, et al. Identification of TL-Om1, an adult T-cell leukemia (ATL) cell line, as reference material for quantitative PCR for human T-lymphotropic virus 1. J Clin Microbiol. 2015;53:587–96.

    Article  CAS  Google Scholar 

  10. Maeda M, Shimizu A, Ikuta K, Okamoto H, Kashihara M, Uchiyama T, et al. Origin of human T-lymphotrophic virus I-positive T cell lines in adult T cell leukemia. Analysis of T cell receptor gene rearrangement. J Exp Med. 1985;162:2169–74.

    Article  CAS  Google Scholar 

  11. Watanabe T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood. 2017;129:1071–81.

    Article  CAS  Google Scholar 

  12. Firouzi S, Farmanbar A, Nakai K, Iwanaga M, Uchimaru K, Utsunomiya A, et al. Clonality of HTLV-1-infected T cells as a risk indicator for development and progression of adult T-cell leukemia. Blood Adv. 2017;1:1195–205.

    Article  CAS  Google Scholar 

  13. Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47:1304–15.

    Article  CAS  Google Scholar 

  14. Katsuya H, Islam S, Tan BJY, Ito J, Miyazato P, Matsuo M, et al. The nature of the HTLV-1 provirus in naturally infected individuals analyzed by the viral DNA-capture-seq approach. Cell Rep. 2019;29:724–735 e4.

    Article  CAS  Google Scholar 

  15. Kluesner MG, Nedveck DA, Lahr WS, Garbe JR, Abrahante JE, Webber BR, et al. EditR: a method to quantify base editing from Sanger sequencing. CRISPR J. 2018;1:239–50.

    Article  CAS  Google Scholar 

  16. Iwanaga M, Watanabe T, Utsunomiya A, Okayama A, Uchimaru K, Koh KR, et al. Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in Japan. Blood. 2010;116:1211–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Masao Matsuoka for providing the ED cell line and a collaborative project of the Joint Study on Prognostic Factors of ATL Development (JSPFAD) for providing DNA obtained from the peripheral blood lymphocytes from HTLV-1 carriers and ATL patients. We also would like to thank Editage (www.editage.com) for English language editing. This work was supported by grants from JSPS KAKENHI (JP17H03594: M.S., JP15K14388: M.S. and M.H., JP15K08647: H.H).

Author information

Authors and Affiliations

Authors

Contributions

MS, HH, SY, DS, YW, TM, and MK performed research. SN, NN, MT, and HH performed data analysis. MY, MN, SN, HI, MO, YI, KU, KM, TW, YM, and KY provided patient samples. MS wrote the manuscript. MS and HH supervised the study.

Corresponding authors

Correspondence to Masumichi Saito or Hiroo Hasegawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 970 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, M., Hasegawa, H., Yamauchi, S. et al. A high-throughput detection method for the clonality of Human T-cell leukemia virus type-1-infected cells in vivo. Int J Hematol 112, 300–306 (2020). https://doi.org/10.1007/s12185-020-02935-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-020-02935-5

Keywords

Navigation