Log in

Optimizing Coronary Angioplasty with FFR and Intravascular Imaging

  • Secondary Prevention and Intervention (D. Steinberg, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Percutaneous coronary intervention has changed the approach to coronary artery disease management, but angiography remains the principal method for determining the severity of disease. Because an angiogram only identifies the outline of the lumen, angiography is not the most sensitive or accurate instrument. This leads to significant inter-observer variation in interpretation of intermediate lesions. Additional technologies have been developed to better evaluate the extent of disease and identify potential high risk lesions. This paper reviews the strengths and deficits of these techniques.

Recent Findings

Clinical outcomes data validate the use of fractional flow reserve (FFR) for physiologic assessment of coronary artery stenosis. Intravascular imaging technology provides unique anatomic information about atherosclerotic plaque. Optical coherence tomography (OCT) has high resolution for visualizing stents and inner-lumen anatomy such as dissections. Intravascular ultrasound (IVUS) has less spatial resolution but has greater penetrating power and therefore provides a more complete picture of atherosclerotic plaque. VH has not been adequately validated and can be misleading compared with tissue histology. NIRS is an emerging technology and, while promising, has not yet achieved widespread application.

Summary

Invasive evaluation is an essential part of coronary artery disease assessment. Some of the techniques in use such as FFR have shown correlation with outcomes and clinical endpoints. Other technologies such as IVUS or OCT provide an anatomic description of the vessel. The use of these imaging tools to describe lesion composition and predict vulnerable plaque has not been as successful or clinically robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Storm E, Moore M, Kolios M. High resolution ultrasound and photoacoustic imaging of single cells. Photoacoustics. 2016;4:36–42.

    Article  Google Scholar 

  2. Colombo A, Tobis JM. Techniques in coronary artery stenting. Martin Kunitz Ltd. 2000. Pages1-37

  3. Nasu K, Tsuchikane E, Katoh O. Accuracy of in vivo coronary plaque morphology assessment. JACC. 2006;47:12.

    Article  Google Scholar 

  4. Fernandes MR, Silva GV, Caixeta A, et al. Assessing intermediate coronary lesions: angiographic prediction of lesion severity on intravascular ultrasound. J Invasive Cardiol. 2007;19(10):412–6.

    PubMed  Google Scholar 

  5. Fischer JJ, Samady H, McPherson JA, et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol. 2002;90(3):210–5. http://www.ncbi.nlm.nih.gov/pubmed/12127605. Accessed March 13, 2016.

    Article  PubMed  Google Scholar 

  6. • Tobis J, Azarbal B, Slavin L. Assessment of intermediate severity coronary lesions in the catheterization laboratory. J Am Coll Cardiol. 2007;49(8):839–48. doi:10.1016/j.jacc.2006.10.055. This reference reviewed the limitation of angiography in assessing lesion severity and in particular intermediate lesions. This is pertinent in particular to bifurcation and serial stenosis lesions.

    Article  PubMed  Google Scholar 

  7. Bing R, Yong ASC, Lowe HC. Percutaneous transcatheter assessment of the left main coronary artery: current status and future directions. JACC Cardiovasc Interv. 2015;8(12):1529–39. doi:10.1016/j.jcin.2015.07.017.

    Article  PubMed  Google Scholar 

  8. Sano K, Mintz GS, Carlier SG, et al. Assessing intermediate left main coronary lesions using intravascular ultrasound. Am Heart J. 2007;154(5):983–8. doi:10.1016/j.ahj.2007.07.001.

    Article  PubMed  Google Scholar 

  9. Nascimento BR, de Sousa MR, Koo B-K, et al. Diagnostic accuracy of intravascular ultrasound-derived minimal lumen area compared with fractional flow reserve—meta-analysis: pooled accuracy of IVUS luminal area versus FFR. Catheter Cardiovasc Interv. 2014;84(3):377–85. doi:10.1002/ccd.25047.

    Article  PubMed  Google Scholar 

  10. de la Torre Hernandez JM, Hernández Hernandez F, Alfonso F, et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J Am Coll Cardiol. 2011;58(4):351–8. doi:10.1016/j.jacc.2011.02.064.

    Article  PubMed  Google Scholar 

  11. Kang S-J, Lee J-Y, Ahn J-M, et al. Intravascular ultrasound-derived predictors for fractional flow reserve in intermediate left main disease. JACC Cardiovasc Interv. 2011;4(11):1168–74. doi:10.1016/j.jcin.2011.08.009.

    Article  PubMed  Google Scholar 

  12. Park S-J, Ahn J-M, Kang S-J, et al. Intravascular ultrasound-derived minimal lumen area criteria for functionally significant left main coronary artery stenosis. JACC Cardiovasc Interv. 2014;7(8):868–74. doi:10.1016/j.jcin.2014.02.015.

    Article  PubMed  Google Scholar 

  13. Abizaid AS, Mintz GS, Mehran R, et al. Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: importance of lumen dimensions. Circulation. 1999;100(3):256–61. http://www.ncbi.nlm.nih.gov/pubmed/10411849. Accessed March 16, 2016.

    Article  CAS  PubMed  Google Scholar 

  14. Waksman R, Legutko J, Singh J, et al. FIRST: fractional flow reserve and intravascular ultrasound relationship study. J Am Coll Cardiol. 2013;61(9):917–23. doi:10.1016/j.jacc.2012.12.012.

    Article  PubMed  Google Scholar 

  15. Koo B-K, Yang H-M, Doh J-H, et al. Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. JACC Cardiovasc Interv. 2011;4(7):803–11. doi:10.1016/j.jcin.2011.03.013.

    Article  PubMed  Google Scholar 

  16. Ahn J-M, Kang S-J, Mintz GS, et al. Validation of minimal luminal area measured by intravascular ultrasound for assessment of functionally significant coronary stenosis comparison with myocardial perfusion imaging. JACC Cardiovasc Interv. 2011;4(6):665–71. doi:10.1016/j.jcin.2011.02.013.

    Article  PubMed  Google Scholar 

  17. Kang S-J, Lee J-Y, Ahn J-M, et al. Validation of intravascular ultrasound-derived parameters with fractional flow reserve for assessment of coronary stenosis severity. Circ Cardiovasc Interv. 2011;4(1):65–71. doi:10.1161/CIRCINTERVENTIONS.110.959148.

    Article  PubMed  Google Scholar 

  18. Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol. 2010;55(3):173–85. doi:10.1016/j.jacc.2009.06.062.

    Article  PubMed  Google Scholar 

  19. Lotfi A, Jeremias A, Fearon WF, et al. Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography: a consensus statement of the Society of Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv. 2014;83(4):509–18. doi:10.1002/ccd.25222.

    Article  PubMed  Google Scholar 

  20. • Kang S-J, Mintz GS, Park D-W, et al. Mechanisms of in-stent restenosis after drug-eluting stent implantation: intravascular ultrasound analysis. Circ Cardiovasc Interv. 2011;4(1):9–14. doi:10.1161/CIRCINTERVENTIONS.110.940320. Drug eluting stents are used to reduce in-stent restenosis. This reference uses IVUS to evaluate luminal loss in lesions addressed with these stents and mechanisms of restenosis.

    Article  PubMed  Google Scholar 

  21. Castagna MT, Mintz GS, Leiboff BO, et al. The contribution of “mechanical” problems to in-stent restenosis: an intravascular ultrasonographic analysis of 1090 consecutive in-stent restenosis lesions. Am Heart J. 2001;142(6):970–4. doi:10.1067/mhj.2001.119613.

    Article  CAS  PubMed  Google Scholar 

  22. Cook S, Eshtehardi P, Kalesan B, et al. Impact of incomplete stent apposition on long-term clinical outcome after drug-eluting stent implantation. Eur Heart J. 2012;33(11):1334–43. doi:10.1093/eurheartj/ehr484.

    Article  PubMed  Google Scholar 

  23. Hong M-K, Mintz GS, Lee CW, et al. Late stent malapposition after drug-eluting stent implantation: an intravascular ultrasound analysis with long-term follow-up. Circulation. 2006;113(3):414–9. doi:10.1161/CIRCULATIONAHA.105.563403.

    Article  CAS  PubMed  Google Scholar 

  24. Hassan AKM, Bergheanu SC, Stijnen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2010;31(10):1172–80. doi:10.1093/eurheartj/ehn553.

    Article  CAS  PubMed  Google Scholar 

  25. Hoffmann R, Morice M-C, Moses JW, et al. Impact of late incomplete stent apposition after sirolimus-eluting stent implantation on 4-year clinical events: intravascular ultrasound analysis from the multicentre, randomised, RAVEL, E-SIRIUS and SIRIUS trials. Heart. 2008;94(3):322–8. doi:10.1136/hrt.2007.120154.

    Article  CAS  PubMed  Google Scholar 

  26. Son R, Tobis JM, Yeatman LA, Johnson JA, Wener LS, Kobashigawa JA. Does use of intravascular ultrasound accelerate arteriopathy in heart transplant recipients? Am Heart J. 1999;138(2 Pt 1):358–63. http://www.ncbi.nlm.nih.gov/pubmed/10426852. Accessed March 17, 2016.

    Article  CAS  PubMed  Google Scholar 

  27. Kobashigawa JA, Tobis JM, Starling RC, et al. Multicenter intravascular ultrasound validation study among heart transplant recipients: outcomes after five years. J Am Coll Cardiol. 2005;45(9):1532–7. doi:10.1016/j.jacc.2005.02.035.

    Article  PubMed  Google Scholar 

  28. Li H, Tanaka K, Oeser B, Kobashigawa JA, Tobis JM. Vascular remodelling after cardiac transplantation: a 3-year serial intravascular ultrasound study. Eur Heart J. 2006;27(14):1671–7. doi:10.1093/eurheartj/ehl097.

    Article  PubMed  Google Scholar 

  29. Okada K, Kitahara H, Yang H-M, et al. Paradoxical vessel remodeling of the proximal segment of the left anterior descending artery predicts long-term mortality after heart transplantation. JACC Heart Fail. 2015;3(12):942–52. doi:10.1016/j.jchf.2015.07.013.

    Article  PubMed  Google Scholar 

  30. Ge J, Jeremias A, Rupp A, et al. New signs characteristic of myocardial bridging demonstrated by intracoronary ultrasound and Doppler. Eur Heart J. 1999;20(23):1707–16. doi:10.1053/euhj.1999.1661.

    Article  CAS  PubMed  Google Scholar 

  31. Tsujita K, Maehara A, Mintz GS, et al. Comparison of angiographic and intravascular ultrasonic detection of myocardial bridging of the left anterior descending coronary artery. Am J Cardiol. 2008;102(12):1608–13. doi:10.1016/j.amjcard.2008.07.054.

    Article  PubMed  Google Scholar 

  32. Angelini P, Uribe C, Monge J, Tobis J, et al. Origin of the right coronary artery from the opposite sinus of Valsalva in adults: characterization by intravascular ultrasonography at baseline and after stent angioplasty. Catheter Cardiovasc Interv. 2015;86:199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Angelini P, Flamm SD. Newer concepts for imaging anomalous aortic origin of the coronary arteries in adults. Catheter Cardiovasc Interv. 2007;69(7):942–54. doi:10.1002/ccd.21140.

    Article  PubMed  Google Scholar 

  34. Lee MS, Oyama J, Bhatia R, Kim Y-H, Park S-J. Left main coronary artery compression from pulmonary artery enlargement due to pulmonary hypertension: a contemporary review and argument for percutaneous revascularization. Catheter Cardiovasc Interv. 2010;76(4):543–50. doi:10.1002/ccd.22592.

    Article  PubMed  Google Scholar 

  35. Lee SE, Yu CW, Park K, et al. Physiological and clinical relevance of anomalous right coronary artery originating from left sinus of Valsalva in adults. Heart. 2016;102(2):114–9. doi:10.1136/heartjnl-2015-308488.

    Article  CAS  PubMed  Google Scholar 

  36. Escaned J, Cortés J, Flores A, et al. Importance of diastolic fractional flow reserve and dobutamine challenge in physiologic assessment of myocardial bridging. J Am Coll Cardiol. 2003;42(2):226–33. http://www.ncbi.nlm.nih.gov/pubmed/12875756. Accessed February 21, 2016.

    Article  PubMed  Google Scholar 

  37. Demerouti E, Petrou E, Karatasakis G, Mastorakou I, Athanassopoulos G. First application of coronary flow reserve measurement for the assessment of left main compression syndrome in pulmonary hypertension. Can J Cardiol. 2015;31(4):548.e9–e548.e11. doi:10.1016/j.cjca.2014.09.012.

    Article  Google Scholar 

  38. Prati F, Di Vito L, Biondi-Zoccai G, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLIOPCI) study. EuroIntervention. 2012;8(7):823–9.

    Article  PubMed  Google Scholar 

  39. Kume T, Okura H, Miyamoto Y, et al. Natural history of stent edge dissection, tissue protrusion and incomplete stent apposition detectable only on optical coherence tomography after stent implantation. Circ J. 2012;76(3):698–703. Epub 2012 Jan 18.

    Article  PubMed  Google Scholar 

  40. Honda S, Kataoka Y, Kanaya T, et al. Characterization of coronary atherosclerosis by intravascular imaging modalities. Cardiovasc Diagn Ther. 2016;6(4):368–81. doi:10.21037/cdt.2015.12.05.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Glaser R, Selzer F, Faxon DP, et al. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation. 2005;111:143–9.

    Article  PubMed  Google Scholar 

  42. Nair A, Margolis P, Kuban B, et al. Automated coronary plaque characterization with intravascular ultrasound backscatter: ex vivo validation. EuroInterv. 2007;3:113–20.

    Google Scholar 

  43. Obaid DR, Calvert PA, McNab D, et al. Identification of coronary plaque sub-types using virtual histology intravascular ultrasound ss affected by inter-observer variability and differences in plaque definitions. Circ Cardiovasc Imaging. 2012;5:86–93. doi:10.1161/CIRCIMAGING.111.965442.

    Article  PubMed  Google Scholar 

  44. Stone GW, Akiko M, Lansky AJ. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  PubMed  Google Scholar 

  45. Rodriguez-Granillo GA, Garcia-Garcia HM, Valgimigli M, et al. Global characterization of coronary plaque rupture phenotype using three-vessel intravascular ultrasound radiofrequency data analysis. Eur Heart J. 2006;27:1921–7. First published on July 13, 2006.

    Article  PubMed  Google Scholar 

  46. Burke AP, Joner M, Virmani R. IVUS-VH: a predictor of plaque morphology? Eur Heart J. 2006;27:1889–90.

    Article  PubMed  Google Scholar 

  47. •• Thim T, Hagensen MK, Wallace-Bradley D, et al. Unreliable assessment of necrotic core by VHTM IVUS in porcine coronary artery disease circ cardiovasc imaging published online May 11, 2010; DOI: 10.1161/CIRCIMAGING.109.919357. Virtual histology (VH) was developed for tissue characterization. This reference evaluated the accuracy of its model and likelihood of correctly identifying high risk lesions such as necrotic core plaques. It found no correlation between the VH IVUS images and actual histology.

  48. Virmani R, Nakazawa G. Animal models and virtual histology. Arterioscler Thromb Vasc Biol. 2007;27:1666. doi:10.1161/ATVBAHA.107.143198.

    Article  CAS  PubMed  Google Scholar 

  49. Stone GW, Mintz GS. Letter by Stone and Mintz regarding article, “unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease”. Circ Cardiovasc Imaging. 2010;3:e4. doi:10.1161/CIRCIMAGING.110.958553.

    Article  PubMed  Google Scholar 

  50. Yamagishi M, Terashima M, Awano K, Kijima M, et al. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol. 2000;35:106–11.

    Article  CAS  PubMed  Google Scholar 

  51. Thim T, Hagensen MK, Wallace-Bradley D, et al. Response to letter regarding article, “unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease”. Circ Cardiovasc Imaging. 2010;3:e5. doi:10.1161/CIRCIMAGING.110.958652.

    Article  Google Scholar 

  52. Patel D, Hamamdzic D, Llano R, et al. Subsequent development of fibroatheromas with inflamed fibrous caps can be predicted by intracoronary near infrared spectroscopy. Arterioscler Thromb Vasc Biol. 2013;33:347–53.

    Article  CAS  PubMed  Google Scholar 

  53. Brugaletta S, Garcia-Garcia HM, Serruys PW, et al. NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography. J Am Coll Cardiol Img. 2011;4(6):647–55. doi:10.1016/j.jcmg.2011.03.013.

    Article  Google Scholar 

  54. Madder RD, Goldstein JA, Madden SP, et al. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. J Am Coll Cardiol Intv. 2013;6(8):838–46. doi:10.1016/j.jcin.2013.04.012.

    Article  Google Scholar 

  55. Costa MA, Angiolillo DJ, Tannenbaum M, et al. Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol. 2008;101(12):1704–11. doi:10.1016/j.amjcard.2008.02.053.

    Article  CAS  PubMed  Google Scholar 

  56. Kasaoka S, Tobis JM, Akiyama T, et al. Angiographic and intravascular ultrasound predictors of in-stent restenosis. J Am Coll Cardiol. 1998;32(6):1630–5. http://www.ncbi.nlm.nih.gov/pubmed/9822089. Accessed March 13, 2016.

    Article  CAS  PubMed  Google Scholar 

  57. Okabe T, Mintz GS, Buch AN, et al. Intravascular ultrasound parameters associated with stent thrombosis after drug-eluting stent deployment. Am J Cardiol. 2007;100(4):615–20. doi:10.1016/j.amjcard.2007.03.072.

    Article  CAS  PubMed  Google Scholar 

  58. Choi S-Y, Witzenbichler B, Maehara A, et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a harmonizing outcomes with revascularization and stents in acute myocardial infarction (HORIZONS-AMI) substudy. Circ Cardiovasc Interv. 2011;4(3):239–47. doi:10.1161/CIRCINTERVENTIONS.110.959791.

    Article  PubMed  Google Scholar 

  59. Liu X, Doi H, Maehara A, et al. A volumetric intravascular ultrasound comparison of early drug-eluting stent thrombosis versus restenosis. JACC Cardiovasc Interv. 2009;2(5):428–34. doi:10.1016/j.jcin.2009.01.011.

    Article  PubMed  Google Scholar 

  60. Fujii K, Carlier SG, Mintz GS, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol. 2005;45(7):995–8. doi:10.1016/j.jacc.2004.12.066.

    Article  CAS  PubMed  Google Scholar 

  61. Doi H, Maehara A, Mintz GS, et al. Impact of post-intervention minimal stent area on 9-month follow-up patency of paclitaxel-eluting stents: an integrated intravascular ultrasound analysis from the TAXUS IV, V, and VI and TAXUS ATLAS Workhorse, Long Lesion, and Direct Stent Trials. JACC Cardiovasc Interv. 2009;2(12):1269–75. doi:10.1016/j.jcin.2009.10.005.

    Article  PubMed  Google Scholar 

  62. Hong M-K, Mintz GS, Lee CW, et al. Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation. Eur Heart J. 2006;27(11):1305–10. doi:10.1093/eurheartj/ehi882.

    Article  PubMed  Google Scholar 

  63. Morino Y, Honda Y, Okura H, et al. An optimal diagnostic threshold for minimal stent area to predict target lesion revascularization following stent implantation in native coronary lesions. Am J Cardiol. 2001;88(3):301–3. http://www.ncbi.nlm.nih.gov/pubmed/11472713. Accessed March 13, 2016.

    Article  CAS  PubMed  Google Scholar 

  64. Song H-G, Kang S-J, Ahn J-M, et al. Intravascular ultrasound assessment of optimal stent area to prevent in-stent restenosis after zotarolimus-, everolimus-, and sirolimus-eluting stent implantation. Catheter Cardiovasc Interv. 2014;83(6):873–8. doi:10.1002/ccd.24560.

    Article  PubMed  Google Scholar 

  65. Sonoda S, Morino Y, Ako J, et al. Impact of final stent dimensions on long-term results following sirolimus-eluting stent implantation: serial intravascular ultrasound analysis from the sirius trial. J Am Coll Cardiol. 2004;43(11):1959–63. doi:10.1016/j.jacc.2004.01.044.

    Article  PubMed  Google Scholar 

  66. Nishida T, Colombo A, Briguori C, et al. Outcome of nonobstructive residual dissections detected by intravascular ultrasound following percutaneous coronary intervention. Am J Cardiol. 2002;89(11):1257–62. http://www.ncbi.nlm.nih.gov/pubmed/12031724. Accessed March 13, 2016.

    Article  PubMed  Google Scholar 

  67. Sheris SJ, Canos MR, Weissman NJ. Natural history of intravascular ultrasound-detected edge dissections from coronary stent deployment. Am Heart J. 2000;139(1 Pt 1):59–63. http://www.ncbi.nlm.nih.gov/pubmed/10618563. Accessed March 13, 2016.

    Article  CAS  PubMed  Google Scholar 

  68. Parise H, Maehara A, Stone GW, Leon MB, Mintz GS. Meta-analysis of randomized studies comparing intravascular ultrasound versus angiographic guidance of percutaneous coronary intervention in pre-drug-eluting stent era. Am J Cardiol. 2011;107(3):374–82. doi:10.1016/j.amjcard.2010.09.030.

    Article  PubMed  Google Scholar 

  69. Lodi-Junqueira L, de Sousa MR, da Paixão LC, Kelles SMB, Amaral CFS, Ribeiro AL. Does intravascular ultrasound provide clinical benefits for percutaneous coronary intervention with bare-metal stent implantation? A meta-analysis of randomized controlled trials. Syst Rev. 2012;1:42. doi:10.1186/2046-4053-1-42.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chieffo A, Latib A, Caussin C, et al. A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: the AVIO trial. Am Heart J. 2013;165(1):65–72. doi:10.1016/j.ahj.2012.09.017.

    Article  PubMed  Google Scholar 

  71. Zhang Y, Farooq V, Garcia-Garcia HM, et al. Comparison of intravascular ultrasound versus angiography-guided drug-eluting stent implantation: a meta-analysis of one randomised trial and ten observational studies involving 19,619 patients. EuroIntervention. 2012;8(7):855–65. doi:10.4244/EIJV8I7A129.

    Article  PubMed  Google Scholar 

  72. Ahn J-M, Kang S-J, Yoon S-H, et al. Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am J Cardiol. 2014;113(8):1338–47. doi:10.1016/j.amjcard.2013.12.043.

    Article  PubMed  Google Scholar 

  73. Klersy C, Ferlini M, Raisaro A, et al. Use of IVUS guided coronary stenting with drug eluting stent: a systematic review and meta-analysis of randomized controlled clinical trials and high quality observational studies. Int J Cardiol. 2013;170(1):54–63. http://www.ncbi.nlm.nih.gov/pubmed/24383071. Accessed March 12, 2016.

    Article  PubMed  Google Scholar 

  74. Hong S-J, Kim B-K, Shin D-H, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA. 2015;314(20):2155–63. doi:10.1001/jama.2015.15454.

    Article  CAS  PubMed  Google Scholar 

  75. Teirstein PS, Price MJ. Left main percutaneous coronary intervention. J Am Coll Cardiol. 2012;60(17):1605–13. doi:10.1016/j.jacc.2012.01.085.

    Article  PubMed  Google Scholar 

  76. Puri R, Kapadia SR, Nicholls SJ, Harvey JE, Kataoka Y, Tuzcu EM. Optimizing outcomes during left main percutaneous coronary intervention with intravascular ultrasound and fractional flow reserve: the current state of evidence. JACC Cardiovasc Interv. 2012;5(7):697–707. doi:10.1016/j.jcin.2012.02.018.

    Article  PubMed  Google Scholar 

  77. de la Torre Hernandez JM, Baz Alonso JA, Gómez Hospital JA, et al. Clinical impact of intravascular ultrasound guidance in drug-eluting stent implantation for unprotected left main coronary disease: pooled analysis at the patient-level of 4 registries. JACC Cardiovasc Interv. 2014;7(3):244–54. doi:10.1016/j.jcin.2013.09.014.

    Article  PubMed  Google Scholar 

  78. Gao X-F, Kan J, Zhang Y-J, et al. Comparison of one-year clinical outcomes between intravascular ultrasound-guided versus angiography-guided implantation of drug-eluting stents for left main lesions: a single-center analysis of a 1,016-patient cohort. Patient Prefer Adherence. 2014;8:1299–309. doi:10.2147/PPA.S65768.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Park S-J, Kim Y-H, Park D-W, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv. 2009;2(3):167–77. doi:10.1161/CIRCINTERVENTIONS.108.799494.

    Article  PubMed  Google Scholar 

  80. Bourantas CV, Onuma Y, Farooq V, Zhang Y, Garcia-Garcia HM, Serruys PW. Bioresorbable scaffolds: current knowledge, potentialities and limitations experienced during their first clinical applications. Int J Cardiol. 2013;167(1):11–21. doi:10.1016/j.ijcard.2012.05.093.

    Article  PubMed  Google Scholar 

  81. Gao R, Stone GW. Reply: incidence of stent thrombosis with bioresorbable vascular scaffolds in comparison with drug-eluting stents. J Am Coll Cardiol. 2016;67(7):892–4. doi:10.1016/j.jacc.2015.12.015.

    Article  PubMed  Google Scholar 

  82. Dash D, Li L. Intravascular ultrasound guided percutaneous coronary intervention for chronic total occlusion. Curr Cardiol Rev. September 2015. http://www.ncbi.nlm.nih.gov/pubmed/26354514. Accessed March 13, 2016.

  83. Hong S-J, Kim B-K, Shin D-H, et al. Usefulness of intravascular ultrasound guidance in percutaneous coronary intervention with second-generation drug-eluting stents for chronic total occlusions (from the Multicenter Korean-Chronic Total Occlusion Registry). Am J Cardiol. 2014;114(4):534–40. doi:10.1016/j.amjcard.2014.05.027.

    Article  PubMed  Google Scholar 

  84. Tian N-L, Gami S-K, Ye F, et al. Angiographic and clinical comparisons of intravascular ultrasound- versus angiography-guided drug-eluting stent implantation for patients with chronic total occlusion lesions: two-year results from a randomised AIR-CTO study. EuroIntervention. 2015;10(12):1409–17. doi:10.4244/EIJV10I12A245.

    Article  PubMed  Google Scholar 

  85. Lopez-Palop R et al. Adequate intracoronary adenosine doses to achieve maximum hyperaemia in coronary functional studies by pressure derived fractional flow reserve: a dose response study. Heart. 2004;90(1):95–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pijls NH et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703–8.

    Article  CAS  PubMed  Google Scholar 

  87. Pijls NH et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 1995;92(11):3183–93.

    Article  CAS  PubMed  Google Scholar 

  88. Pijls NH et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J Am Coll Cardiol. 2007;49(21):2105–11.

    Article  PubMed  Google Scholar 

  89. van Nunen LX et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet. 2015;386(10006):1853–60.

    Article  PubMed  Google Scholar 

  90. De Bruyne B et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991–1001.

    Article  PubMed  Google Scholar 

  91. Kumbhani DJ, Bhatt DL. Fractional flow reserve in serial coronary artery stenoses. JAMA Cardiol. 2016;1(3):359–60. doi:10.1001/jamacardio.2016.0219.

    Article  PubMed  Google Scholar 

  92. Agarwal SK, Kasula S, Hacioglu Y, et al. Utilizing post-intervention fractional flow reserve to optimize acute results and the relationship to long-term outcomes. JACC Cardiovasc Interv. 2016;9(10):1022–31. doi:10.1016/j.jcin.2016.01.046.

    Article  PubMed  Google Scholar 

  93. Kasula S, Agarwal SK, Hacioglu Y, et al. Clinical and prognostic value of poststenting fractional flow reserve in acute coronary syndromes. Heart. 2016;doi: 10.1136/heartjnl-2016-309422.

  94. Samady H et al. Fractional flow reserve of infarct-related arteries identifies reversible defects on noninvasive myocardial perfusion imaging early after myocardial infarction. J Am Coll Cardiol. 2006;47(11):2187–93.

    Article  PubMed  Google Scholar 

  95. Ntalianis A et al. Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Interv. 2010;3(12):1274–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Marvin Tobis.

Ethics declarations

Conflict of Interest

Drs. Abudayyeh, Tran, and Tobis have no conflicts of interests to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Secondary Prevention and Intervention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abudayyeh, I., Tran, B.G. & Tobis, J.M. Optimizing Coronary Angioplasty with FFR and Intravascular Imaging. Curr Cardiovasc Risk Rep 11, 7 (2017). https://doi.org/10.1007/s12170-017-0534-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-017-0534-9

Keywords

Navigation