Log in

Multiplex PCR in Species Authentication: Probability and Prospects—A Review

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Food forgery is one of the most articulated socio-economic concerns which contributed to increase people’s awareness on what they eat and how and where it is produced. Consumers are anxious about the consequences of food falsification on their choices, religious rituals, health, and hard-earned fortunes. The recent scandals of horse and rat meats in Europe and China have given us a brainstorming apprehension on the detection, differentiation, and identification of meat products. To restore consumers’ trust and protect wildlife in natural habitats, researchers and policy-making and policy-implementing authorities have massively monitored all steps in the production of foods and food materials. Analytical approaches based on lipids, proteins, and DNA have been proposed for the authentication of meat species under pure and complex matrices. However, protein and lipid-based methods are less effective since the target biomarkers could be modified throughout the processing treatments. On the other hand, DNA-based species identification schemes have gained wider acceptance and reliability because of the superior stability and universality of DNA in all tissues and cells. We systematically presented here major species detection schemes with special emphasis on multiplex polymerase chain reaction (PCR) of both end-point and real-time platforms. We believe this short but comprehensive review would serve as a reference guide for the developers and users of multiplex PCR and others DNA-based techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed MU, Hasan Q, Hossain M, Saito M, Tamiya E (2010) Meat species identification based on the loop mediated isothermal amplification and electrochemical DNA sensor. Food Control 21(5):599–605. doi:10.1016/j.foodcont.2009.09.001

    CAS  Google Scholar 

  • Aida AA, Che Man YB, Wong CM, Raha AR, Son R (2005) Analysis of raw meats and fats of pigs using polymerase chain reaction for Halal authentication. Meat Sci 69(1):47–52. doi:10.1016/j.meatsci.2004.06.020

    CAS  Google Scholar 

  • Alaeddini R (2012) Forensic implications of PCR inhibition—a review. Forensic Sci Int: Genetics 6:297–305

    CAS  Google Scholar 

  • Ali ME, Hashim U, Mustafa S, Che Man YB (2011a) Swine-specific pcr-rflp assay targeting mitochondrial cytochrome b gene for semiquantitative detection of pork in commercial meat products. Food Anal Method 5(3):613–623. doi:10.1007/s12161-011-9290-5

    Google Scholar 

  • Ali ME, Hashim U, Mustafa S, Che Man YB, Yusop MHM, Bari MF, Hasan MF (2011b) Nanoparticle sensor for label free detection of swine DNA in mixed biological samples. Nanotechnology 22:8. doi:10.1088/0957-4484/22/19/195503

    Google Scholar 

  • Ali ME, Hashim U, Mustafa S, Che Man YB, Yusop MHM, Kashif M, Latif MA (2011c) Nanobiosensor for detection and quantification of dna sequences in degraded mixed meats. J Nanomater 2011:1–11. doi:10.1155/2011/781098

    CAS  Google Scholar 

  • Ali ME, Hashim U, Dhahi TS, Mustafa S, Che Man YB, Latif MA (2012a) Analysis of pork adulteration in commercial burgers targeting porcine-specific mitochondrial cytochrome b gene by taqman probe real-time polymerase chain reaction. Food Anal Method 5(4):784–794. doi:10.1007/s12161-011-9311-4

    Google Scholar 

  • Ali ME, Hashim U, Mustafa S, Che Man YB, Dhahi TS, Kashif M, Abd Hamid SB (2012b) Analysis of pork adulteration in commercial meatballs targeting porcine-specific mitochondrial cytochrome b gene by TaqMan probe real-time polymerase chain reaction. Meat Sci 91(4):454–459. doi:10.1016/j.meatsci.2012.02.031

    CAS  Google Scholar 

  • Ali ME, Kashif M, Uddin K, Hashim U, Mustafa S, Che Man YB (2012c) Species authentication methods in foods and feeds: the present, past, and future of halal forensics. Food Anal Method 5(5):935–955. doi:10.1007/s12161-011-9357-3

    Google Scholar 

  • Ali ME, Hashim U, Mustafa S, Che Man YB, Islam KN (2012d) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 2012:7. doi:10.1155/2012/103607

    Google Scholar 

  • Ali ME, Rahman MM, Sharifah BAH, Mustafa S, Bhassu S, Hasim U (2013) Canine-specific pcr assay targeting cytochrome b gene for the detection of dog meat adulteration in commercial frankfurters. Food Anal Method. doi:10.1007/s12161-013-9672-y

    Google Scholar 

  • Amjadi H, Varidi MJ, Marashi SH, Javadmanesh A, Ghovvati S (2012) Development of rapid PCR-RFLP technique for identification of sheep, cattle and goat’s species and fraud detection in Iranian commercial meat products. African J Biotechnol 11(34):8594–8599. doi:10.5897/ajb11.1724

    CAS  Google Scholar 

  • Aristoy MC, Toldra F (2004) Histidine dipeptides HPLC-based test for the detection of mammalian origin proteins in feeds for ruminants. Meat Sci 67(2):211–217. doi:10.1016/j.meatsci.2003.10.008

    CAS  Google Scholar 

  • Arslan A, Ilhak OI, Calicioglu M (2006) Effect of method of cooking on identification of heat processed beef using polymerase chain reaction (PCR) technique. Meat Sci 72(2):326–330. doi:10.1016/j.meatsci.2005.08.001

    CAS  Google Scholar 

  • Asensio L (2008) Application of multiplex PCR for the identification of grouper meals in the restaurant industry. Food Control 19(11):1096–1099. doi:10.1016/j.foodcont.2007.11.002

    CAS  Google Scholar 

  • Asensio L, González I, García T, Martín R (2008) Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 19(1):1–8. doi:10.1016/j.foodcont.2007.02.010

    CAS  Google Scholar 

  • Ayaz Y, Ayaz ND, Erol I (2006) Detection of species in meat and meat products using enzyme-linked immunosorbent assay. J Muscle Foods 17(2):214–220

    Google Scholar 

  • Ballin NZ (2010) Authentication of meat and meat products. Meat Sci 86(3):577–587. doi:10.1016/j.meatsci.2010.06.001

    CAS  Google Scholar 

  • Ballin NZ, Vogensen FK, Karlsson AH (2009) Species determination—Can we detect and quantify meat adulteration? Meat Sci 83(2):165–174. doi:10.1016/j.meatsci.2009.06.003

    CAS  Google Scholar 

  • Bei**g, A. (2013). Rat meat sold as lamb in latest China food scandal. Retrieved 4 May, 2013, from http://finance.yahoo.com/news/rat-meat-sold-lamb-latest-132039664.html

  • Benedetto A, Abete MC, Squadrone S (2011) Towards a quantitative application of real-time PCR technique for fish DNA detection in feedstuffs. Food Chem 126(3):1436–1442. doi:10.1016/j.foodchem.2010.11.131

    CAS  Google Scholar 

  • Bottero MT, Dalmasso A (2011) Animal species identification in food products: evolution of biomolecular methods. Vet J 190(1):34–38. doi:10.1016/j.tvjl.2010.09.024

    CAS  Google Scholar 

  • Brodmann PD, Moor D (2003) Sensitive and semi-quantitative TaqMan™ real-time polymerase chain reaction systems for the detection of beef (Bos taurus) and the detection of the family Mammalia in food and feed. Meat Sci 65(1):599–607. doi:10.1016/s0309-1740(02)00253-x

    CAS  Google Scholar 

  • Cai H, Gu X, Scanlan MS, Ramatlapeng DH, Lively CR (2012) Real-time PCR assays for detection and quantitation of porcine and bovine DNA in gelatin mixtures and gelatin capsules. J Food Com Anal 25(1):83–87. doi:10.1016/j.jfca.2011.06.008

    CAS  Google Scholar 

  • Cammà C, Di Domenico M, Monaco F (2012) Development and validation of fast real-time PCR assays for species identification in raw and cooked meat mixtures. Food Control 23(2):400–404. doi:10.1016/j.foodcont.2011.08.007

    Google Scholar 

  • Castle, S. (2013). Nestlé Removes 2 Products in Horse Meat Scandal, The New York Times. Retrieved from www.nytimes.com/2013/02/20/world/europe/nestle-pulls-2-products-in-horse-meat-scandal.html?_r=0&pagewanted=print

  • Catanese G, Manchado M, Fernández-Trujillo A, Infante C (2010) A multiplex-PCR assay for the authentication of mackerels of the genus Scomber in processed fish products. Food Chem 122(1):319–326

    Google Scholar 

  • Chamberlain JS, Gibbs RA, Ranierl JE, Nguyen PN, Caskey CT (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16(23)

  • Che Man YB, Gan HL, NorAini I, Nazimah SAH, Tan CP (2005) Detection of lard adulteration in RBD palm olein using an electronic nose. Food Chem 90(4):829–835

    Google Scholar 

  • Che Man YB, Mustafa S, Mokhtar K, Fadhilah N, Nordin R, Sazili AQ (2012) Porcine-specific polymerase chain reaction assay based on mitochondrial d-loop gene for identification of pork in raw meat. Int J Food Prop 15(1):134–144. doi:10.1080/10942911003754692

    CAS  Google Scholar 

  • Chen FC, Hsieh YH, Bridgman RC (2004) Monoclonal antibody-based sandwich enzyme-linked immunosorbent assay for sensitive detection of prohibited ruminant proteins in feedstuffs. J Food Prot 67(3):544–549

    CAS  Google Scholar 

  • Chisholm J, Conyers C, Booth C, Lawley W, Hird H (2005) The detection of horse and donkey using real-time PCR. Meat Sci 70(4):727–732. doi:10.1016/j.meatsci.2005.03.009

    CAS  Google Scholar 

  • Chuang P-S, Chen M-I, Shiao J-C (2012) Identification of tuna species by a real-time polymerase chain reaction technique. Food Chem 133(3):1055–1061. doi:10.1016/j.foodchem.2012.01.076

    CAS  Google Scholar 

  • Colgan S, O’Brien L, Maher M, Shilton N, McDonnell K, Ward S (2001) Development of a DNA-based assay for species identification in meat and bone meal. Food Res Int 34:409–414

    CAS  Google Scholar 

  • Dalmasso A, Fontanella E, Piatti P, Civera T, Rosati S, Bottero MT (2004) A multiplex PCR assay for the identification of animal species in feedstuffs. Mol Cell Probes 18(2):81–87. doi:10.1016/j.mcp.2003.09.006

    CAS  Google Scholar 

  • Dalvit C, De Marchi M, Cassandro M (2007) Genetic traceability of livestock products: a review. Meat Sci 77(4):437–449. doi:10.1016/j.meatsci.2007.05.027

    CAS  Google Scholar 

  • Damez JL, Clerjon S (2008) Meat quality assessment using biophysical methods related to meat structure. Meat Sci 80(1):132–149. doi:10.1016/j.meatsci.2008.05.039

    Google Scholar 

  • Demirhan Y, Ulca P, Senyuva HZ (2012) Detection of porcine DNA in gelatine and gelatine-containing processed food products-Halal/Kosher authentication. Meat Sci 90(3):686–689. doi:10.1016/j.meatsci.2011.10.014

    CAS  Google Scholar 

  • Di Pinto A, Forte VT, Conversano MC, Tantillo GM (2005) Duplex polymerase chain reaction for detection of pork meat in horse meat fresh sausages from Italian retail sources. Food Control 16(5):391–394. doi:10.1016/j.foodcont.2004.04.004

    Google Scholar 

  • Dooley JJ, Paine KE, Garrett SD, Brown HM (2004) Detection of meat species using TaqMan real-time PCR assays. Meat Sci 68(3):431–438. doi:10.1016/j.meatsci.2004.04.010

    CAS  Google Scholar 

  • Doosti A, Dehkordi PG, Rahimi E (2011) Molecular assay to fraud identification of meat products. J Food Sci Technol. doi:10.1007/s13197-011-0456-3

    Google Scholar 

  • Drummond MG, Brasil BSAF, Dalsecco LS, Brasil RSAF, Teixeira LV, Oliveira DAA (2013) A versatile real-time PCR method to quantify bovine contamination in buffalo products. Food Control 29(1):131–137. doi:10.1016/j.foodcont.2012.05.051

    CAS  Google Scholar 

  • Eung Soo, K., Young Hwa, K., Byoung Seob, K., Seung Eun, O., Eui Jung, D., & Mi Young, L. (2011). Multiplex polymerase chain reaction (PCR) and fluorescence-based capillary electrophoresis for identification of deer species from antlers. African J Biotechnol, 11(13). doi: 10.5897/ajb11.3375

  • European Commission (2002). Council Regulation (EC) No 178/2002 of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. , L31 C.F.R. (2002).

  • Fajardo V, Gonzalez I, Martin I, Rojas M, Hernandez PE, Garcia T, Martin R (2008) Real-time PCR for detection and quantification of red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) in meat mixtures. Meat Sci 79(2):289–298. doi:10.1016/j.meatsci.2007.09.013

    CAS  Google Scholar 

  • Fajardo V, González I, Rojas M, García T, Martín R (2010) A review of current PCR-based methodologies for the authentication of meats from game animal species. Trends Food Sci Tech 21(8):408–421. doi:10.1016/j.tifs.2010.06.002

    CAS  Google Scholar 

  • Fuh MR, Huang SY, Lin TY (2004) Determination of residual anabolic steroid in meat by gas chromatography-ion trap-mass spectrometer. Talanta 64(2):408–414. doi:10.1016/j.talanta.2004.03.002

    CAS  Google Scholar 

  • Fumiere O, Dubois M, Baeten V, von Holst C, Berben G (2006) Effective PCR detection of animal species in highly processed animal byproducts and compound feeds. Anal Bioanal Chem 385(6):1045–1054. doi:10.1007/s00216-006-0533-z

    CAS  Google Scholar 

  • Fumière O, Veys P, Boix A, von Holst C, Baeten V, Berben G (2009) Methods of detection, species identification and quantification of processed animal proteins in feedingstuffs. Biotechnol Agron Soc Environ 13:59–70

    Google Scholar 

  • Ghovvati S, Nassiri MR, Mirhoseini SZ, Moussavi AH, Javadmanesh A (2009) Fraud identification in industrial meat products by multiplex PCR assay. Food Control 20(8):696–699. doi:10.1016/j.foodcont.2008.09.002

    CAS  Google Scholar 

  • Girish PS, Anjaneyulu ASR, Viswas KN, Anand M, Rajkumar N, Shivakumar BM, Bhaskar S (2004) Sequence analysis of mitochondrial 12S rRNA gene can identify meat species. Meat Sci 66(3):551–556. doi:10.1016/s0309-1740(03)00158-x

    CAS  Google Scholar 

  • Ha JC, Jung WT, Nam YS, Moon TW (2006) PCR identification of ruminant tissue in raw and heat-treated meat meals. J Food Prot 69(9):2241–2247

    CAS  Google Scholar 

  • Hahn H (1999) Animal meal: production and determination in feedstuffs and the origin of bovine spongiform encephalopathy. Naturwissenschaften 86(2):62–70

    CAS  Google Scholar 

  • Hargin KD (1996) Authenticity issues in meat and meat products. Meat Sci 43:277–289

    Google Scholar 

  • Haye PA, Segovia NI, Vera R, Gallardo M d l Á, Gallardo-Escárate C (2012) Authentication of commercialized crab-meat in Chile using DNA barcoding. Food Control 25(1):239–244, doi: 10.1016/j.foodcont.2011.10.034

    CAS  Google Scholar 

  • Hazim MMY, Mustafa S, Che Man YB, Omar AR, Mokhtar NFK (2012) Detection of raw pork targeting porcine-specific mitochondrial cytochrome b gene by molecular beacon probe real-time polymerase chain reaction. Food Anal Method 5:422–429. doi:10.1007/s12161-011-9260-y

    Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6(10):986–994

    CAS  Google Scholar 

  • Herrero B, Vieites JM, Espiñeira M (2011) Authentication of Atlantic salmon (Salmo salar) using real-time PCR. Food Chem 127(3):1268–1272. doi:10.1016/j.foodchem.2011.01.070

    CAS  Google Scholar 

  • Hird HJ, Chisholm J, Brown J (2005) The detection of commercial duck species in food using a single probe-multiple species-specific primer real-time PCR assay. Eur Food Res Technol 221(3–4):559–563. doi:10.1007/s00217-005-1197-1

    CAS  Google Scholar 

  • Hird HJ, Hold GL, Chisholm J, Reece P, Russell VJ, Brown J, MacArthur R (2004) Development of a method for the quantification of haddock (Melanogrammus aeglefinus) in commercial products using real-time PCR. Eur Food Res Technol 220(5–6):633–637. doi:10.1007/s00217-004-1050-y

    Google Scholar 

  • Hsieh YHP, Woodward BB, Ho SH (1995) Detection of species substitutioln in raw and cooked meats using immunoassays. J Food Prot 58(5):555–559

    Google Scholar 

  • Ilhak OI, Arslan A (2007) Identification of meat species by polymerase chain reaction (pcr) techniques. Turk J Vet Anim Sci 31(3):159–163

    CAS  Google Scholar 

  • Infante C, Crespo A, Zuasti E, Ponce M, Pérez L, Funes V, Manchado M (2006). PCR-based methodology for the authentication of the Atlantic mackerel Scomber scombrus in commercial canned products. Food Res Int 39(9):1023–1028

    Google Scholar 

  • Iwobi AN, Huber I, Hauner G, Miller A, Busch U (2011) Biochip technology for the detection of animal species in meat products. Food Anal Method 4(3):389–398

    Google Scholar 

  • Jeanette, T. (2013). Chinese police seize more than 20,000 kg of fake beef. Retrieved 14 September, 2013, from http://my.news.yahoo.com/blogs/what-is-buzzing/chinese-police-seize-more-20-000kg-fake-beef-035448883.html

  • Johansson MK (2006) Choosing reporter–quencher pairs for efficient quenching through formation of intramolecular dimers. In V. V. Didenko (Ed.), Methods in Molecular Biology (Vol. 335, pp. 17). Humana Press Inc., Totowa, New Jersey

    Google Scholar 

  • Kesmen Z, Celebi Y, Güllüce A, Yetim H (2009) Identification of meat species by TaqMan-based real-time PCR assay. Meat Sci 82(4):444–449. doi:10.1016/j.meatsci.2009.02.019

    CAS  Google Scholar 

  • Kesmen Z, Celebi Y, Güllüce A, Yetim H (2013) Detection of seagull meat in meat mixtures using real-time PCR analysis. Food Control 34(1):47–49. doi:10.1016/j.foodcont.2013.04.006

    CAS  Google Scholar 

  • Köppel R, Daniels M, Felderer N, Brünen-Nieweler C (2013) Multiplex real-time PCR for the detection and quantification of DNA from duck, goose, chicken, turkey and pork. Eur Food Res Technol 236(6):1093–1098. doi:10.1007/s00217-013-1973-2

    Google Scholar 

  • Köppel R, Ruf J, Rentsch J (2011) Multiplex real-time PCR for the detection and quantification of DNA from beef, pork, horse and sheep. Eur Food Res Technol 232(1):151–155. doi:10.1007/s00217-010-1371-y

    Google Scholar 

  • Köppel R, Zimmerli F, Breitenmoser A (2009) Heptaplex real-time PCR for the identification and quantification of DNA from beef, pork, chicken, turkey, horse meat, sheep (mutton) and goat. Eur Food Res Technol 230(1):125–133. doi:10.1007/s00217-009-1154-5

    Google Scholar 

  • Laube I, Spiegelberg A, Butschke A, Zagon J, Schauzu M, Kroh L, Broll H (2003) Methods for the detection of beef and pork in foods using real-time polymerase chain reaction. Int J Food Sci Technol 38(2):111–118, doi: DOI 10.1046/j.1365-2621.2003.00651.x

    CAS  Google Scholar 

  • Laube I, Zagon J, Broll H (2007a) Quantitative determination of commercially relevant species in foods by real-time PCR. Int J Food Sci Technol 42(3):336–341, doi: DOI 10.1111/j.1365-2621.2006.01249.x

    CAS  Google Scholar 

  • Laube I, Zagon J, Spiegelberg A, Butschke A, Kroh LW, Broll H (2007b) Development and design of a ‘ready-to-use’ reaction plate for a PCR-based simultaneous detection of animal species used in foods. Int J Food Sci Technol 42(1):9–17. doi:10.1111/j.1365-2621.2006.01154.x

    CAS  Google Scholar 

  • Lenstra JA (2010) Detection of adulterations: identification of animal species. In: Nollet LML, Toldrá F (eds) Safety Analysis of Foods of Animal Origin. FL:CRC Press, Boca Raton, pp 601–617

    Google Scholar 

  • Lin W-F, Hwang D-F (2008) A multiplex PCR assay for species identification of raw and cooked bonito. Food Control 19(9):879–885. doi:10.1016/j.foodcont.2007.08.015

    CAS  Google Scholar 

  • Lockley AK, Bardsley RG (2000) DNA-based methods for food authentication. Trends Food Sci Tech 11:67–77

    CAS  Google Scholar 

  • López-Andreo M, Aldeguer M, Guillén I, Gabaldón JA, Puyet A (2012) Detection and quantification of meat species by qPCR in heat-processed food containing highly fragmented DNA. Food Chem 134(1):518–523. doi:10.1016/j.foodchem.2012.02.111

    Google Scholar 

  • Lopez-Andreo M, Garrido-Pertierra A, Puyet A (2006) Evaluation of post-polymerase chain reaction melting temperature analysis for meat species identification in mixed DNA samples. J Agric Food Chem 54(21):7973–7978

    CAS  Google Scholar 

  • Lopez-Andreo M, Lugo L, Garrido-Pertierra A, Prieto MI, Puyet A (2005) Identification and quantitation of species in complex DNA mixtures by real-time polymerase chain reaction. Anal Biochem 339(1):73–82. doi:10.1016/j.ab.2004.11.045

    CAS  Google Scholar 

  • Lucker EH, Eigenbrodt E, Wenisch S, Leiser R, Bulte M (2000) Identification of central nervous system tissue in retail meat products. J Food Prot 63(2):258–263

    CAS  Google Scholar 

  • Luo J-q, Wang J-q, Bu D-p, Dan L, Wang L, Wei H-y, Zhou L-y (2008) Development and Application of a pcr approach for detection of bovis, sheep, pig, and chicken derived materials in feedstuff. Agric Sci China 7(10):1260–1266

    Google Scholar 

  • Macedo-Silva A, Barbosa SFC, Alkmin MGA, Vaz AJ, Shimokomaki M, Tenuta-Filho A (2000) Hamburger meat identification by dot-ELISA. Meat Sci 56:189–192

    CAS  Google Scholar 

  • Maede D (2006) A strategy for molecular species detection in meat and meat products by PCR-RFLP and DNA sequencing using mitochondrial and chromosomal genetic sequences. Eur Food Res Technol 224(2):209–217

    CAS  Google Scholar 

  • Mafra I, Ferreira IMPLVO, Oliveira MBPP (2007) Food authentication by PCR-based methods. Eur Food Res Technol 227(3):649–665. doi:10.1007/s00217-007-0782-x

    Google Scholar 

  • Mao F, Leung WY, **n X (2007) Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol 7:76. doi:10.1186/1472-6750-7-76

    Google Scholar 

  • Martin I, Garcia T, Fajardo V, Lopez-Calleja I, Hernandez PE, Gonzalez I (2007) Species-specific PCR for the identification of ruminant species in feedstuffs. Meat Sci 75(1):120–127

    CAS  Google Scholar 

  • Martin I, Garcia T, Fajardo V, Rojas M, Pegels N, Hernandez PE, Martin IG (2009) SYBR-Green real-time PCR approach for the detection and quantification of pig DNA in feedstuffs. Meat Sci 82(2):252–259. doi:10.1016/j.meatsci.2009.01.023

    CAS  Google Scholar 

  • Matsunaga T, Chikuni K, Tanabe R, Muroya S, Shibata K, Yamada J, Shinmura Y (1999) A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci 51:143–148

    CAS  Google Scholar 

  • McKean JD (2001) The importance of traceability for public health and consumer protection. Rev sci tech Off int Epiz 20(2):363–371

    CAS  Google Scholar 

  • McMillin KW (2008) Where is MAP going? A review and future potential of modified atmosphere packaging for meat. Meat Sci 80(1):43–65. doi:10.1016/j.meatsci.2008.05.028

    CAS  Google Scholar 

  • Mecca JN, Meireles LR, de Andrade HF Jr (2011) Quality control of toxoplasma gondii in meat packages: standardization of an ELISA test and its use for detection in rabbit meat cuts. Meat Sci 88(3):584–589, doi: 10.1016/j.meatsci.2011.01.016

    Google Scholar 

  • Meireles LR, Galisteo AJ Jr, Pompeu E, Andrade HF Jr (2004) Toxoplasma gondii spreading in an urban area evaluated by seroprevalence in free-living cats and dogs. Trop Med Int Health 9(8):876–881

    CAS  Google Scholar 

  • Meyer R, Candrian U (1996) PCR-based DNA analysis for the identification and characterization of food components. Lebensmittel-Wissenhauf und-Technologie 29:1–9

    CAS  Google Scholar 

  • Mohamad NA, El Sheikha AF, Mustafa S, Mokhtar NFK (2013) Comparison of gene nature used in real-time PCR for porcine identification and quantification: a review. Food Res Int 50(1):330–338, doi: DOI 10.1016/j.foodres.2012.10.047

    CAS  Google Scholar 

  • Mollica JP, Oakhill JS, Lamb GD, Murphy RM (2009) Are genuine changes in protein expression being overlooked? Reassessing Western blotting. Anal Biochem 386(2):270–275. doi:10.1016/j.ab.2008.12.029

    CAS  Google Scholar 

  • Nakyinsige K, Che Man YB, Sazili AQ, Zulkifli I, Fatimah AB (2012a) Halal Meat: A Niche Product in the Food Market. Paper presented at the International Conference on Economics. Trade and Development, Singapore

    Google Scholar 

  • Nakyinsige K, Man YB, Sazili AQ (2012b) Halal authenticity issues in meat and meat products. Meat Sci 91(3):207–214. doi:10.1016/j.meatsci.2012.02.015

    Google Scholar 

  • Nurjuliana M, Che Man YB, Mat Hashim D, Mohamed AK (2011) Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer. Meat Sci 88(4):638–644. doi:10.1016/j.meatsci.2011.02.022

    CAS  Google Scholar 

  • Opara L, Mazaud F (2001) Food traceability from field to plate. Outlook on agriculture 30(4):239–247

    Google Scholar 

  • Pank M, Stanhope M, Natanson L, Kohler N, Shivji M (2001) Rapid and simultaneous identification of body parts from the morphologically similar sharks Carcharhinus obscurus and Carcharhinus plumbeus (Carcharhinidae) using multiplex PCR. Mar Biotechnol (NY) 3(3):231–240. doi:10.1007/s101260000071

    CAS  Google Scholar 

  • Pegels N, Gonzalez I, Lopez-Calleja I, Fernandez S, Garcia T, Martin R (2012) Evaluation of a TaqMan real-time PCR assay for detection of chicken, turkey, duck, and goose material in highly processed industrial feed samples. Poult Sci 91(7):1709–1719. doi:10.3382/ps.2011-01954

    CAS  Google Scholar 

  • Pegels N, González I, Martín I, Rojas M, García T, Martín R (2011) Applicability assessment of a real-time PCR assay for the specific detection of bovine, ovine and caprine material in feedstuffs. Food Control 22(8):1189–1196. doi:10.1016/j.foodcont.2011.01.015

    CAS  Google Scholar 

  • Peris M, Escuder-Gilabert L (2009) A 21st century technique for food control: electronic noses. Anal Chim Acta 638(1):1–15. doi:10.1016/j.aca.2009.02.009

    CAS  Google Scholar 

  • Rastogi G, Dharne MS, Walujkar S, Kumar A, Patole MS, Shouche YS (2007) Species identification and authentication of tissues of animal origin using mitochondrial and nuclear markers. Meat Sci 76(4):666–674. doi:10.1016/j.meatsci.2007.02.006

    CAS  Google Scholar 

  • Rodriguez-Ramirez, R., Gonzalez, −. C., A. F., & Vallejo, −. C. B. (2011). Review: Authentication and traceability of foods from animal origin by polymerase chain reaction-based capillary electrophoresis. Anal Chim Acta, 685(2), 120–126. doi: 10.1016/j.aca.2010.11.021

  • Rodriguez MA, Garcia T, Gonzalez I, Hernandez PE, Martin R (2005) TaqMan real-time PCR for the detection and quantitation of pork in meat mixtures. Meat Sci 70(1):113–120. doi:10.1016/j.meatsci.2004.12.005

    CAS  Google Scholar 

  • Rohman A, Sismindari, Erwanto Y, Che Man YB (2011) Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Sci 88(1):91–95. doi: 10.1016/j.meatsci.2010.12.007

  • Rojas M, González I, Pavón MÁ, Pegels N, Hernández PE, García T, Martín R (2011) Application of a real-time PCR assay for the detection of ostrich (Struthio camelus) mislabelling in meat products from the retail market. Food Control 22(3–4):523–531. doi:10.1016/j.foodcont.2010.09.039

    CAS  Google Scholar 

  • Rojas M, Gonzalez I, Pavon MA, Pegels N, Lago A, Hernandez PE, Martin R (2010) Novel TaqMan real-time polymerase chain reaction assay for verifying the authenticity of meat and commercial meat products from game birds. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27(6):749–763. doi:10.1080/19440040903503070

    CAS  Google Scholar 

  • Safdar M, Abasıyanık MF (2013) Development of fast multiplex real-time PCR assays based on EvaGreen fluorescence dye for identification of beef and soybean origins in processed sausages. Food Res Int 54(2):1652–1656. doi:10.1016/j.foodres.2013.09.013

    CAS  Google Scholar 

  • Sakai Y, Kotoura S, Yano T, Kurihara T, Uchida K, Miake K, Tanabe S (2011) Quantification of pork, chicken and beef by using a novel reference molecule. Biosci Biotechnol Biochem 75(9):1639–1643. doi:10.1271/bbb.110024

    CAS  Google Scholar 

  • Şakalar E, Abasıyanık MF (2012) The development of duplex real-time PCR based on SYBR Green florescence for rapid identification of ruminant and poultry origins in foodstuff. Food Chem 130(4):1050–1054. doi:10.1016/j.foodchem.2011.07.130

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd, Editionth edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Santos CG, Melo VS, Amaral JS, Estevinho L, Oliveira MB, Mafra I (2012) Identification of hare meat by a species-specific marker of mitochondrial origin. Meat Sci 90(3):836–841. doi:10.1016/j.meatsci.2011.10.018

    CAS  Google Scholar 

  • Sawyer J, Wood C, Shanahan D, Gout S, McDowell D (2003) Real-time PCR for quantitative meat species testing. Food Control 14(8):579–583. doi:10.1016/s0956-7135(02)00148-2

    CAS  Google Scholar 

  • Simoons FJ (1994) Eat not this flesh food avoidances from prehistory to the present. The University Wisconsin Press, Madison/London

    Google Scholar 

  • Singh VP, Neelam S (2011) Meat species specifications to ensure the quality of meat—a review. Int J Meat Sci 1(1):15–26. doi:10.3923/ijmeat.2011.15.26

    Google Scholar 

  • Skarpeid H-J, Moe RE, Indahl UG (2001) Detection of mechanically recovered meat and head meat from cattle in ground beef mixtures by multivariate analysis of isoelectric focusing protein profiles. Meat Sci 57:227–234

    CAS  Google Scholar 

  • Soares S, Amaral JS, Oliveira MB, Mafra I (2013) A SYBR Green real-time PCR assay to detect and quantify pork meat in processed poultry meat products. Meat Sci 94(1):115–120. doi:10.1016/j.meatsci.2012.12.012

    CAS  Google Scholar 

  • Sultan KR, Tersteeg MHG, Koolmees PA, de Baaij JA, Bergwerff AA, Haagsman HP (2004) Western blot detection of brain material in heated meat products using myelin basic protein and neuron-specific enolase as biomarkers. Anal Chim Acta 520(1–2):183–192. doi:10.1016/j.aca.2004.03.023

    CAS  Google Scholar 

  • SzabÓ A, FÉBel H, SugÁR L, RomvÁRi R (2007) Fatty acid regiodistribution analysis of divergent animal triacylglycerol samples—a possible approach for species differentiation. J Food Lipids 14(1):62–77, doi: 10.1111/j.1745-4522.2006.00071.x

    Google Scholar 

  • Tanabe S, Hase M, Yano T, Sato M, Fujimura T, Akiyama H (2007) A real-time quantitative PCR detection method for pork, chicken, beef, mutton, and horseflesh in foods. Biosci Biotechnol Biochem 71(12):3131–3135

    CAS  Google Scholar 

  • Teletchea F (2009) Molecular identification methods of fish species: reassessment and possible applications. Rev Fish Biol Fisheries 19:265–293

    Google Scholar 

  • Teletchea F, Bernillon J, Duffraisse M, Laudet V, Hänni C (2008) Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J Appl Ecol 45(3):967–975

    Google Scholar 

  • Tobe SS, Linacre AM (2008) A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome b gene. Electrophoresis 29(2):340–347. doi:10.1002/elps.200700706

    CAS  Google Scholar 

  • Troota M, Schonhuth S, Pepe T, Cortesi ML, Puyet A, Bautista JM (2005) Multiplex PCR method for use in real-time PCR for identification of fish fillets from grouper (Epinephelusand and Mycteroperca species) and common substitute species. J Agric Food Chem 53:2039–2045

    Google Scholar 

  • Ulca P, Balta H, Cagin I, Senyuva HZ (2013) Meat species identification and Halal authentication using PCR analysis of raw and cooked traditional Turkish foods. Meat Sci 94(3):280–284. doi:10.1016/j.meatsci.2013.03.008

    CAS  Google Scholar 

  • van der Spiegel M, van der Fels-Klerx HJ, Sterrenburg P, van Ruth SM, Scholtens-Toma IMJ, Kok EJ (2012) Halal assurance in food supply chains: verification of halal certificates using audits and laboratory analysis. Trends Food Sci Tech 27(2):109–119. doi:10.1016/j.tifs.2012.04.005

    Google Scholar 

  • van Raamsdonk LWD, von Holst C, Baeten V, Berben G, Boix A, de Jong J (2007) New developments in the detection and identification of processed animal proteins in feeds. Animal Feed Sci Technol 133(1–2):63–83. doi:10.1016/j.anifeedsci.2006.08.004

    Google Scholar 

  • Walker JA, Hughes DA, Anders BA, Shewale J, Sinha SK, Batzer MA (2003) Quantitative intra-short interspersed element PCR for species-specific DNA identification. Anal Biochem 316(2):259–269. doi:10.1016/s0003-2697(03)00095-2

    CAS  Google Scholar 

  • Walker JA, Hughes DA, Hedges DJ, Anders BA, Laborde ME, Shewale J, Batzer MA (2004) Quantitative PCR for DNA identification based on genome-specific interspersed repetitive elements. Genomics 83(3):518–527. doi:10.1016/j.ygeno.2003.09.003

    CAS  Google Scholar 

  • Wang W, Chen K, Xu C (2006) DNA quantification using EvaGreen and a real-time PCR instrument. Anal Biochem 356(2):303–305. doi:10.1016/j.ab.2006.05.027

    CAS  Google Scholar 

  • Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17(8):804–807. doi:10.1038/11751

    CAS  Google Scholar 

  • Winterhalter P (2006) Authentication of food and wine. In: Ebeler SE, Takeota GR, Winterhalter P (eds) Authentication of Food and Wine, vol 952. American Chemical Society, Washington DC, pp 2–12

    Google Scholar 

  • Yan P, Wu X-B, Shi Y, Gu C-M, Wang R-P, Wang C-L (2005) Identification of Chinese alligators (Alligator sinensis) meat by diagnostic PCR of the mitochondrial cytochrome b gene. Biol Conser 121(1):45–51. doi:10.1016/j.biocon.2004.04.008

    Google Scholar 

  • Yin RH, Bai WL, Wang JM, Wu CD, Dou QL, Yin RL, Luo GB (2009) Development of an assay for rapid identification of meat from yak and cattle using polymerase chain reaction technique. Meat Sci 83(1):38–44. doi:10.1016/j.meatsci.2009.03.008

    CAS  Google Scholar 

  • Yoon J-H, Leeb ST, Shin YK, Kim S-B, Kim H-J, Goodfellow M, Park Y-H (1996) Rapid identification of Saccharomonospora strains by multiplex PCR using species-specific primers within the 16s rRNA gene. J Microbiol Method 27(89)

  • Zha DM, **ng XM, Yang FH (2010) A multiplex PCR assay for fraud identification of deer products. Food Control 21(10):1402–1407, doi: DOI 10.1016/j.foodcont.2010.04.013

    CAS  Google Scholar 

  • Zha DM, **ng XM, Yang FH (2011) Rapid identification of deer products by multiplex PCR assay. Food Chem 129(4):1904–1908. doi:10.1016/j.foodchem.2011.05.141

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University of Malaya research grant (UMRG) no. RG153-12AET to M. E. Ali for supporting this research.

Conflict of Interest

Md. Eaqub Ali declares that he received funding from the University of Malaya, intellectually supported the works and significantly edited the manuscript and he has no conflict of interest to publish this paper. Md. Abdur Razzak declares that he prepared the manuscript and he has no conflict of interest to publish this paper. Sharifah Bee Abd Hamid declares that she has no conflict of interest to publish this paper.

Compliance with Ethics Requirements

This study does not involve any handling of animals or live species and also does not have any contents with conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Eaqub Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M.E., Razzak, M.A. & Hamid, S.B.A. Multiplex PCR in Species Authentication: Probability and Prospects—A Review. Food Anal. Methods 7, 1933–1949 (2014). https://doi.org/10.1007/s12161-014-9844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-9844-4

Keywords

Navigation