Log in

Design, Development, and Optimization of Sustainable Pyrolyzer for Biochar Production from Agricultural Crop Residue

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This article presents an energy-efficient biochar kiln that produces biochar from agricultural crop residues. The kiln is designed to be easy to operate and has minimal requirements for special operations. It works by heating biomass in a combustion chamber using recirculated pyrogas. The study optimized the process parameters and economics of producing biochar from wheat straw using Response Surface Methodology (RSM) based on Central Composite Design (CCD). The sustainable pyrolyzer had a thermal efficiency of 43.69%, with steady-state operation at 517.68 ± 98.18 °C. It produced an average of 54.57 ± 1.86 kg of biochar per batch, using 36.96 ± 3.66 kg of subabul (Leucaena leucocephala) as fuel and 179.61 ± 2.87 kg of wheat straw as feedstock. Subabul is chosen as a fuel due to its rapid growth, high calorific value, low moisture content, efficient combustion, and minimal smoke emission. The thermogravimetric index (TGI) and calorific value of WSB were 7.14 and 25.91 ± 0.74 MJ/kg, respectively. The benefit–cost ratio and payback period were 2.27 ± 0.16 and 4.92 ± 0.44 months, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Dai Y, Sun Q, Wang W et al (2018) Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review. Chemosphere 211:235–253. https://doi.org/10.1016/j.chemosphere.2018.06.179

    Article  CAS  PubMed  Google Scholar 

  2. Kiong Kong K, Sing Sii H (2020) Design and construction of mobile Biochar Kiln for small farmers. IOP Conf Ser Mater Sci Eng 788:. https://doi.org/10.1088/1757-899X/788/1/012075

  3. Duque-Acevedo M, Belmonte-Ureña LJ, Cortés-García FJ, Camacho-Ferre F (2020) Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Glob Ecol Conserv 22:e00902. https://doi.org/10.1016/j.gecco.2020.e00902

    Article  Google Scholar 

  4. Kim Oanh NT, Permadi DA, Hopke PK et al (2018) Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015. Atmos Environ 187:163–173. https://doi.org/10.1016/j.atmosenv.2018.05.061

    Article  CAS  Google Scholar 

  5. Alhazmi H, Loy ACM (2021) A review on environmental assessment of conversion of agriculture waste to bio-energy via different thermochemical routes: current and future trends. Bioresour Technol Reports 14:100682. https://doi.org/10.1016/j.biteb.2021.100682

    Article  Google Scholar 

  6. Ramola S, Belwal T, Srivastava RK (2020) Thermochemical conversion of biomass waste-based biochar for environment remediation. Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer International Publishing, Cham, pp 1–16

    Google Scholar 

  7. Lee XJ, Ong HC, Gan YY et al (2020) State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers Manag 210:112707. https://doi.org/10.1016/j.enconman.2020.112707

    Article  CAS  Google Scholar 

  8. Hawash SI, Farah JY, El-Diwani G (2017) Pyrolysis of agriculture wastes for bio-oil and char production. J Anal Appl Pyrolysis 124:369–372. https://doi.org/10.1016/j.jaap.2016.12.021

    Article  CAS  Google Scholar 

  9. Dhar SA, Sakib TU, Hilary LN (2022) Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Convers Biorefinery 12:2631–2647. https://doi.org/10.1007/s13399-020-01116-y

    Article  CAS  Google Scholar 

  10. Amenaghawon AN, Anyalewechi CL, Okieimen CO, Kusuma HS (2021) Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environ Dev Sustain 23:14324–14378. https://doi.org/10.1007/s10668-021-01276-5

    Article  Google Scholar 

  11. K N Y, T PD, P S, et al (2022) Lignocellulosic biomass-based pyrolysis: a comprehensive review. Chemosphere 286:131824. https://doi.org/10.1016/j.chemosphere.2021.131824

    Article  CAS  PubMed  Google Scholar 

  12. Zhu Y, Chen M, Li Q et al (2018) A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon N Y 129:695–701. https://doi.org/10.1016/j.carbon.2017.12.103

    Article  CAS  Google Scholar 

  13. Patel MR, Rathore N, Panwar NL (2021) Influences of biochar in biomethanation and CO2 mitigation potential. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01855-6

    Article  Google Scholar 

  14. El-Naggar A, Lee SS, Rinklebe J et al (2019) Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337:536–554. https://doi.org/10.1016/j.geoderma.2018.09.034

    Article  CAS  Google Scholar 

  15. Das SK, Ghosh GK (2020) Soil health management through low cost biochar technology. Biochar applications in agriculture and environment management. Springer International Publishing, Cham, pp 193–206

    Chapter  Google Scholar 

  16. Patel MR, Panwar NL (2023) Biochar from agricultural crop residues: environmental, production, and life cycle assessment overview. Resour Conserv Recycl Adv 19:200173. https://doi.org/10.1016/j.rcradv.2023.200173

    Article  Google Scholar 

  17. Osman AI, Fawzy S, Farghali M et al (2022) Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environ Chem Lett 20:2385–2485. https://doi.org/10.1007/s10311-022-01424-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karimi M, Shirzad M, Silva JAC, Rodrigues AE (2022) Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: a review and prospects for future directions. J CO2 Util 57:101890. https://doi.org/10.1016/j.jcou.2022.101890

  19. An N, Zhang L, Liu Y et al (2022) Biochar application with reduced chemical fertilizers improves soil pore structure and rice productivity. Chemosphere 298:134304. https://doi.org/10.1016/j.chemosphere.2022.134304

    Article  CAS  PubMed  Google Scholar 

  20. Allohverdi T, Mohanty AK, Roy P, Misra M (2021) A review on current status of biochar uses in agriculture. Molecules 26:5584. https://doi.org/10.3390/molecules26185584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kavitha B, Reddy PVL, Kim B et al (2018) Benefits and limitations of biochar amendment in agricultural soils: a review. J Environ Manage 227:146–154. https://doi.org/10.1016/j.jenvman.2018.08.082

    Article  CAS  PubMed  Google Scholar 

  22. Lee JY, Lee SE, Lee DW (2022) Current status and future prospects of biological routes to bio-based products using raw materials, wastes, and residues as renewable resources. Crit Rev Environ Sci Technol 52:2453–2509. https://doi.org/10.1080/10643389.2021.1880259

    Article  Google Scholar 

  23. Yang L, Wang XC, Dai M, et al (2021) Shifting from fossil-based economy to bio-based economy: status quo, challenges, and prospects. Energy 228:. https://doi.org/10.1016/j.energy.2021.120533

  24. Zhao Y, Qamar SA, Qamar M et al (2021) Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. J Environ Manage 300:113762. https://doi.org/10.1016/j.jenvman.2021.113762

    Article  CAS  PubMed  Google Scholar 

  25. Hossain N, Bhuiyan MA, Pramanik BK et al (2020) Waste materials for wastewater treatment and waste adsorbents for biofuel and cement supplement applications: a critical review. J Clean Prod 255:120261. https://doi.org/10.1016/j.jclepro.2020.120261

    Article  CAS  Google Scholar 

  26. Shackley S, Hammond J, Gaunt J, Ibarrola R (2011) The feasibility and costs of biochar deployment in the UK. Carbon Manag 2:335–356

    Article  Google Scholar 

  27. De Corato U, De Bari I, Viola E, Pugliese M (2018) Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: a review. Renew Sustain Energy Rev 88:326–346. https://doi.org/10.1016/j.rser.2018.02.041

    Article  Google Scholar 

  28. Gabhane JW, Bhange VP, Patil PD et al (2020) Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Appl Sci 2:1–21. https://doi.org/10.1007/s42452-020-3121-5

    Article  CAS  Google Scholar 

  29. Wongsiriamnuay T, Tippayawong N (2010) Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresour Technol 101:5638–5644. https://doi.org/10.1016/j.biortech.2010.02.037

    Article  CAS  PubMed  Google Scholar 

  30. Narde SR, Remya N (2022) Biochar production from agricultural biomass through microwave-assisted pyrolysis: predictive modelling and experimental validation of biochar yield. Environ Dev Sustain 24:11089–11102. https://doi.org/10.1007/s10668-021-01898-9

    Article  Google Scholar 

  31. Mia S, Uddin N, Al Mamun Hossain SA et al (2015) Production of biochar for soil application: a comparative study of three Kiln models. Pedosphere 25:696–702. https://doi.org/10.1016/S1002-0160(15)30050-3

    Article  Google Scholar 

  32. Alahakoon AMYW, Karunarathna AK, Dharmakeerthi RS, Silva FHCA (2022) Design and development of a double-chamber down draft (DcDD) pyrolyzer for biochar production from rice husk. J Biosyst Eng 47:458–467. https://doi.org/10.1007/s42853-022-00159-5

    Article  Google Scholar 

  33. Te WZ, Muhanin KNM, Chu Y-M, et al (2021) Optimization of pyrolysis parameters for production of biochar from banana peels: evaluation of biochar application on the growth of Ipomoea aquatica. Front Energy Res 8:. https://doi.org/10.3389/fenrg.2020.637846

  34. Gelman A (2005) Analysis of variance—why it is more important than ever. Ann Stat 33:. https://doi.org/10.1214/009053604000001048

  35. Vieira FR, Romero Luna CM, Arce GLAF, Ávila I (2020) Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass Bioenerg 132:105412. https://doi.org/10.1016/j.biombioe.2019.105412

    Article  CAS  Google Scholar 

  36. Bhaskar T, Bhavya B, Singh R et al (2011) Thermochemical Conversion of biomass to biofuels. Biofuels. Elsevier, pp 51–77

    Chapter  Google Scholar 

  37. Zhang L, Xu C, (Charles), Champagne P, (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51:969–982. https://doi.org/10.1016/j.enconman.2009.11.038

    Article  CAS  Google Scholar 

  38. Di Blasi C, Branca C, Galgano A (2017) On the experimental evidence of exothermicity in wood and biomass pyrolysis. Energy Technol 5:19–29. https://doi.org/10.1002/ente.201600091

    Article  CAS  Google Scholar 

  39. Kung KS, Thengane SK, Lim CJ et al (2020) Thermal loss analysis and improvements for biomass conversion reactors. Energy Convers Manag 218:112924. https://doi.org/10.1016/j.enconman.2020.112924

    Article  CAS  Google Scholar 

  40. Taherymoosavi S, Joseph S, Pace B, Munroe P (2018) A comparison between the characteristics of single- and mixed-feedstock biochars generated from wheat straw and basalt. J Anal Appl Pyrolysis 129:123–133. https://doi.org/10.1016/j.jaap.2017.11.020

    Article  CAS  Google Scholar 

  41. Rathore NS, Pawar A, Panwar NL (2021) Kinetic analysis and thermal degradation study on wheat straw and its biochar from vacuum pyrolysis under non-isothermal condition. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01360-w

    Article  Google Scholar 

  42. Kumar M, Gupta RC (1996) Subabul: a wood species for electricity generation. Energy Sources 18:807–812. https://doi.org/10.1080/00908319608908812

    Article  CAS  Google Scholar 

  43. De Melo BV, De Sá ME, Schaefer CEGR et al (2005) Properties of black soil humic acids from high altitude rocky complexes in Brazil. Geoderma 127:104–113. https://doi.org/10.1016/j.geoderma.2004.11.020

    Article  CAS  Google Scholar 

  44. Sangsuk S, Buathong C, Suebsiri S (2020) High-energy conversion efficiency of drum kiln with heat distribution pipe for charcoal and biochar production. Energy Sustain Dev 59:1–7. https://doi.org/10.1016/j.esd.2020.08.008

    Article  Google Scholar 

  45. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481. https://doi.org/10.1016/j.rser.2015.10.122

    Article  CAS  Google Scholar 

  46. You S, Wang X (2019) On the Carbon abatement potential and economic viability of biochar production systems. Biochar from biomass and waste. Elsevier, pp 385–408

    Google Scholar 

  47. Kumar Mishra R, Jaya Prasanna Kumar D, Narula A et al (2023) Production and beneficial impact of biochar for environmental application: a review on types of feedstocks, chemical compositions, operating parameters, techno-economic study, and life cycle assessment. Fuel 343:127968. https://doi.org/10.1016/j.fuel.2023.127968

    Article  CAS  Google Scholar 

  48. Singh S, Chakraborty JP, Mondal MK (2020) Pyrolysis of torrefied biomass: optimization of process parameters using response surface methodology, characterization, and comparison of properties of pyrolysis oil from raw biomass. J Clean Prod 272:122517. https://doi.org/10.1016/j.jclepro.2020.122517

    Article  CAS  Google Scholar 

  49. Arafat Hossain M, Ganesan P, Jewaratnam J, Chinna K (2017) Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production. Energy Convers Manag 133:349–362. https://doi.org/10.1016/j.enconman.2016.10.046

    Article  CAS  Google Scholar 

  50. Potnuri R, Rao CS, Surya DV et al (2023) Utilizing support vector regression modeling to predict pyro product yields from microwave-assisted catalytic co-pyrolysis of biomass and waste plastics. Energy Convers Manag 292:117387. https://doi.org/10.1016/j.enconman.2023.117387

    Article  CAS  Google Scholar 

  51. Chen Z, Niu B, Zhang L, Xu Z (2018) Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors. J Hazard Mater 342:192–200. https://doi.org/10.1016/j.jhazmat.2017.08.021

    Article  CAS  PubMed  Google Scholar 

  52. Poddar S, Sarat Chandra Babu J (2021) Modelling and optimization of a pyrolysis plant using swine and goat manure as feedstock. Renew Energy 175:253–269. https://doi.org/10.1016/j.renene.2021.04.120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Council of Agricultural Research, Govt. of India, for providing financial aid to complete the research project under the Consortium Research Platform (CRP) on Energy from Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

Maga Ram Patel: data curation, investigation, writing—original draft. Narayan Lal Panwar: conceptualization, data curation, formal analysis, investigation, supervision, writing—review and editing. Chitranjan Agrawal, Trilok Gupta, Kamalesh Kumar Meena, Sanwal Singh Meena: formal analysis, writing—review and editing.

Corresponding author

Correspondence to Narayan Lal Panwar.

Ethics declarations

Ethical Approval and Consent to Participate.

This study does not involve any human participants or animals. All authors willingly provided informed consent to participate in this research.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.R., Panwar, N.L., Agrawal, C. et al. Design, Development, and Optimization of Sustainable Pyrolyzer for Biochar Production from Agricultural Crop Residue. Bioenerg. Res. (2024). https://doi.org/10.1007/s12155-024-10786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-024-10786-9

Keywords

Navigation