Log in

Pulsed drip irrigation reduces sugarcane water consumption and improves growth, productivity, sugar and ethanol yields

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The water deficit resulting from climate variations limits the profitability and sustainability of sugarcane fields, making water supply through irrigation necessary to sustain the potential production of sugarcane. However, the water used for irrigation purposes must be properly managed, ensuring the conservation of water resources and the reduction of costs with the use of inputs and energy. Pulsed drip irrigation aims to support irrigation management, improving the efficient use of water and mitigating the deleterious effects of water deficit. This study aims to evaluate the growth, productivity, and industrial yield of sugarcane cultivated under continuous and pulsed drip irrigation. A field experiment was conducted at the Experimental Sugarcane Station of Carpina, in Carpina in the State of Pernambuco, Northeast Brazil, from December 2020 to December 2021. The experimental arrangement was randomized blocks in a 2 x 5 factorial design, with two types of irrigation application (pulsed and continuous) and five irrigation levels (40, 60, 80, 100, and 120% of crop evapotranspiration – ETc), with four replications. Pulsed drip irrigation increased the yield of stalks (9%) and sugar (21%) in the sugarcane crop and ethanol (17%) derived from sugar in the juice. Pulsed drip irrigation, when compared to continuous irrigation, improved the performance of sugarcane, providing a reduction in water consumption and increasing growth, stalk yield, sugar and predicted ethanol yield. Thus, based on this study, pulse irrigation is an efficient approach to irrigation management, contributing to the stability of sugarcane production while conserving water relative to continuous irrigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Aquino GS, Fermino EC (2022) The NPK1 gene increases sugarcane productivity under water deficit and conventional crop management conditions. Biocatal Agric Biotechnol 102454. https://doi.org/10.1016/J.BCAB.2022.102454

  2. Narayan JA, Chakravarthi M, Nerkar G, Manoj VM, Dharshini S, Subramonian N, Premachandran MN, Arun Kumar R, Krishna Surendar K, Hemaprabha G, Ram B, Appunu C (2021) Overexpression of expansin EaEXPA1, a cell wall loosening protein enhances drought tolerance in sugarcane. Ind Crops Prod 159:113035. https://doi.org/10.1016/j.indcrop.2020.113035

    Article  CAS  Google Scholar 

  3. Mohanraj K, Hemaprabha G, Vasantha S (2021) Biomass yield, dry matter partitioning and physiology of commercial and Erianthus introgressed sugarcane clones under contrasting water regimes. Agric Water Manag 255:107035. https://doi.org/10.1016/j.agwat.2021.107035

    Article  Google Scholar 

  4. OECD/FAO (2018) “OECD-FAO Agricultural Outlook”, OECD Agriculture statistics (database). Available in: http://www.fao.org/3/i9166e/i9166e_Chapter5_Sugar.pdf. Accessed 12 Jan 2022

  5. Conab - Companhia Nacional de Abastecimento (2022) Acompanhamento da safra brasileira de cana-de-açúcar: safra 2021/2022. Brasília DF, 56p. Available in: https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-deacucar

  6. Garcia FHS, Mendonça AMA, Rodrigues M, Matias FI, Silva Filho MP, Santos HRB, Taffner J, Barbosa JPRAD (2020) Water deficit tolerance in sugarcane is dependent on the accumulation of sugar in the leaf. Ann Appl Biol 176:65–74. https://doi.org/10.1111/aab.12559

    Article  CAS  Google Scholar 

  7. Misra V, Solomon S, Mall AK, Prajapati CP, HashemAbd-AllahAnsari AEFMI (2020) Morphological assessment of water stressed sugarcane: A comparison of waterlogged and drought affected crop. Saudi J Biol Sci 27:1228–1236. https://doi.org/10.1016/j.sjbs.2020.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  8. Verma KK, Singh P, Song XP, Malviya MK, Singh RK, Chen GL, Solomon S, Li YR (2020) Mitigating climate change for sugarcane improvement: role of silicon in alleviating abiotic stresses. Sugar Tech 22:741–749. https://doi.org/10.1007/s12355-020-00831-0

    Article  CAS  Google Scholar 

  9. Alves HKMN, Jardim AMRF, Araújo Júnior GN, Souza CAA, Leite RMC, Silva GIN, Souza LSB, Silva TGF (2022) Uma abordagem sobre práticas agrícolas resilientes para maximização sustentável dos sistemas de produção no Semiárido brasileiro. Rev Bras Geogr Física 15:373. https://doi.org/10.26848/rbgf.v15.1.p373-392

    Article  Google Scholar 

  10. Cardozo NP, Bordonal RO, La Scala N (2018) Sustainable intensification of sugarcane production under irrigation systems, considering climate interactions and agricultural efficiency. J Clean Prod 204:861–871. https://doi.org/10.1016/j.jclepro.2018.09.004

    Article  Google Scholar 

  11. Dias HB, Sentelhas PC (2019) Dimensioning the impact of irrigation on sugarcane yield in Brazil. Sugar Tech 21:29–37. https://doi.org/10.1007/s12355-018-0619-x

    Article  CAS  Google Scholar 

  12. Marin FR, Inman-Bamber G, Silva TGF, Vianna MS, Nassif DSP, Carvalho KS (2020) Sugarcane evapotranspiration and irrigation requirements in tropical climates. Theor Appl Climatol 140:1349–1357. https://doi.org/10.1007/s00704-020-03161-z

    Article  ADS  Google Scholar 

  13. Singh I, Verma RR, Srivastava TK (2018) Growth, yield, irrigation water use efficiency, juice quality and economics of sugarcane in pusa hydrogel application under different irrigation scheduling. Sugar Tech 20:29–35. https://doi.org/10.1007/s12355-017-0515-9

    Article  Google Scholar 

  14. Cruz RIF, Silva GF, Silva MM, Silva AHS, Santos Junior JA, Silva ÊFF (2021) Productivity of irrigated peanut plants under pulse and continuous drip** irrigation with brackish water. Rev Caatinga 34:208–218. https://doi.org/10.1590/1983-21252021v34n121rc

    Article  Google Scholar 

  15. Eid AR, Bakry BA, Taha MH (2013) Effect of pulse drip irrigation and mulching systems on yield, quality traits and irrigation water use efficiency of soybean under sandy soil conditions. Agric Sci 04:249–261. https://doi.org/10.4236/as.2013.45036

    Article  Google Scholar 

  16. Abd-Elhakim AI (2019) Soil conditioner effect on soil wetting patterns under pulsed drip irrigation system. Misr J Agric Eng 36:473–492. https://doi.org/10.21608/MJAE.2019.94653

    Article  Google Scholar 

  17. Phogat V, Skewes MA, Mahadevan M, Cox JW (2013) Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions. Agric Water Manag 118:1–11. https://doi.org/10.1016/j.agwat.2012.11.015

    Article  Google Scholar 

  18. Almeida WF, Paz VPS, Jesus APC, Silva JS, Gonçalves KS, Oliveira AS (2018) Yield of green beans subjected to continuous and pulse drip irrigation with saline water. Rev Bras Eng Agrícola e Ambient 22:476–481. https://doi.org/10.1590/1807-1929/agriambi.v22n7p476-481

    Article  Google Scholar 

  19. Zamora VRO, Silva MM, Santos Júnior JA, Silva GF, Menezes D, Almeida CDGC (2021) Assessing the productivity of coriander under different irrigation depths and fertilizers applied with continuous and pulsed drip systems. Water Supply 21:2099–2108. https://doi.org/10.2166/ws.2021.008

    Article  CAS  Google Scholar 

  20. Assouline S, Möller M, Cohen S, Ben-Hur M, Grava A, Narkis K, Silber A (2006) Soil-plant system response to pulsed drip irrigation and salinity. Soil Sci Soc Am J 70:1556–1568. https://doi.org/10.2136/sssaj2005.0365

    Article  CAS  Google Scholar 

  21. Bakeer GAA, El-Ebabi FG, El-Saidi MT, Abdelghany ARE (2009) Effect of pulse drip irrigation on yield and water use efficiency of potato crop under organic agriculture in sandy soils. Misr J Agric Eng. 26:736–765. https://doi.org/10.21608/mjae.2009.109488

    Article  Google Scholar 

  22. Zamora VRO, Silva MM, Silva GF, Santos Júnior JA, Menezes D, Menezes SM (2019) Pulse drip irrigation and fertigation water depths in the water relations of coriander. Hortic Bras 37:22–28. https://doi.org/10.1590/s0102-053620190103

    Article  CAS  Google Scholar 

  23. Cormier J, Depardieu C, Letourneau G, Boily C, Gallichand J, Caron J (2020) Tensiometer-based irrigation scheduling and water use efficiency of field-grown strawberries. Agron J 112:2581–2597. https://doi.org/10.1002/agj2.20205

    Article  CAS  Google Scholar 

  24. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  ADS  Google Scholar 

  25. Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, D.C. (usda.gov)

  26. Richards LA (1954) Diagnosis and Improvement of. BioScience 4(3):14. https://doi.org/10.1093/aibsbulletin/4.3.14-a

    Article  Google Scholar 

  27. Keller J, Karmeli D (1974) Trickle irrigation design parameters. Trans ASAE 17:678–684

    Article  Google Scholar 

  28. Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO Irrig Drain 24:144

    Google Scholar 

  29. Doorenbos J, Kassam AH (1994) Efeito da água no rendimento das culturas. FAO Irrig Drain 33:306

    Google Scholar 

  30. Thornthwaite CW, Mather JR (1955) The water balance. Publ. Climatol. New Jersey: Drexel Instıtute Of Technology. Laboratory of Climatology, Publications in Climatology, New Jersey 8(1):1–104

  31. Oliveira RA, Hoffmann H P, Barbosa GVS (2021) Liberação nacional de variedades RB de cana-de-açúcar. Orgs: UFPR/RIDESA. Graciosa, Curitiba, p 79

  32. Hermann ER, Camara GMS (1999) Um método simples para estimar a área foliar da cana-de-açúcar. Rev da Soc Dos Técnicos Açucareiros e Álcool do Bras 17:32–34

    Google Scholar 

  33. Consecana - Conselho dos Produtores de Cana-de-Açúcar, Açúcar e Álcool do Estado de São Paulo-Consecana (2015) Manual de Instruções. Piracicaba, 112 pág. (2015) https://edisciplinas.usp.br/pluginfile.php/3116035/mod_resource/content/1/Manual%20do%20Consecana.pdf

  34. Statsoft Inc (2010) Stat: Data Anal Softw Syst, version 10.0

  35. Dingre SK, Gorantiwar SD (2021) Soil moisture based deficit irrigation management for sugarcane (Saccharum officinarum L) in semiarid environment. Agric Water Manag 245:106549. https://doi.org/10.1016/j.agwat.2020.106549

  36. Costa ARFC, Rolim MM, Simões Neto DE, Silva MM, Silva GF, Pedrosa EMR (2019) Produtividade e qualidade tecnológica da cana-de-açúcar submetida a diferentes lâminas de irrigação e doses de nitrogênio. Irriga 24:38–53. https://doi.org/10.15809/irriga.2019v24n1p38-53

    Article  Google Scholar 

  37. Lira RM, Silva ÊFF, Simões Neto DE, Santos Júnior JA, Lima BLC, Silva JS (2018) Growth and yield of sugarcane irrigated with brackish water and leaching fractions. Rev Bras Eng Agrícola e Ambient 22:170–175. https://doi.org/10.1590/1807-1929/agriambi.v22n3p170-175

    Article  Google Scholar 

  38. Inman-Bamber NG, Lakshmanan P, Park S (2012) Sugarcane for water-limited environments: Theoretical assessment of suitable traits. F Crop Res 134:95–104. https://doi.org/10.1016/j.fcr.2012.05.004

    Article  Google Scholar 

  39. Olivier FC, Singels A (2015) Increasing water use efficiency of irrigated sugarcane production in South Africa through better agronomic practices. F Crop Res 176:87–98. https://doi.org/10.1016/j.fcr.2015.02.010

    Article  Google Scholar 

  40. Amaral MACM, Coelho RD, José JV, Oliveira AS (2019) Temperatura base e taxa de crescimento de oito variedades de cana-de-açúcar. Rev GEAMA 5:21–29

    Google Scholar 

  41. Singels A, Smit MA (2009) Sugarcane response to row spacing-induced competition for light. F Crop Res 113:149–155. https://doi.org/10.1016/j.fcr.2009.04.015

    Article  Google Scholar 

  42. Boyle RKA, McAinsh M, Dodd IC (2016) Daily irrigation attenuates xylem abscisic acid concentration and increases leaf water potential of Pelargonium × hortorum compared with infrequent irrigation. Physiol Plant 158:23–33. https://doi.org/10.1111/ppl.12433

    Article  CAS  PubMed  Google Scholar 

  43. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Food and Agriculture Organization of the United Nations, Rome

  44. Oliveira FM, Aspiazú I, Kondo MK (2011) Crescimento e produção de variedades de cana-de-açúcar influenciadas por diferentes adubações e estresse hídrico. Rev Trópica 5:56–67. https://doi.org/10.0000/rtcab.v5i1.305

    Article  Google Scholar 

  45. Silva NF, Cunha FN, Teixeira MB, Soares FAL (2020) Crescimento e rendimento da cana-de-açúcar irrigada submetida a diferentes reposições hídricas e nitrogênio. Rev Bras Agric Irrig 14:3792–3802. https://doi.org/10.7127/rbai.v14n100955

    Article  Google Scholar 

  46. Maia Júnior SO, Andrade JR, Santos CM, Silva ALJ, Endres L, Silva JV, Silva LKS (2020) Osmoregulators’ accumulation minimizes the effects of drought stress in sugarcane and contributes to the recovery of photochemical efficiency in photosystem II after rewatering. Acta Physiol Plant 42:1–11. https://doi.org/10.1007/s11738-020-03050-y

    Article  CAS  Google Scholar 

  47. Dinh TH, Watanabe K, Takaragawa H, Nakabaru M, Kawamitsu Y (2017) Photosynthetic response and nitrogen use efficiency of sugarcane under drought stress conditions with different nitrogen application levels. Plant Prod Sci 20:412–422. https://doi.org/10.1080/1343943X.2017.1371570

    Article  CAS  Google Scholar 

  48. Hoang DT, Hiroo T, Yoshinobu K (2019) Nitrogen use efficiency and drought tolerant ability of various sugarcane varieties under drought stress at early growth stage. Plant Prod Sci 22:250–261. https://doi.org/10.1080/1343943X.2018.1540277

    Article  CAS  Google Scholar 

  49. Aquino GS, Medina CC, Costa DC, Shahab M, Santiago AD (2017) Sugarcane straw management and its impact on production and development of ratoons. Ind Crops Prod 102:58–64. https://doi.org/10.1016/j.indcrop.2017.03.018

    Article  CAS  Google Scholar 

  50. Silva DP, Johnson RM, Crusciol CAC (2022) The effects of cobalt on sugarcane growth and development in plant cane and two ratoon crops. Sugar Tech 24:1778–1789. https://doi.org/10.1007/S12355-022-01108-4/TABLES/5

    Article  CAS  Google Scholar 

  51. Arriero SS, Almeida WF, Paz VPS, Damasceno LF (2020) Yield of eggplant using low quality water and pulse drip irrigation. Rev Bras Eng Agrícola e Ambient 24:822–826. https://doi.org/10.1590/1807-1929/agriambi.v24n12p822-826

    Article  Google Scholar 

  52. Morais JEF, Silva ÊFF, Godoi Neto AH, Lima BLC, Lira RM, Berto SDC, Jardim AMRF, Simões Neto DE, Silva TGF, Rolim MM (2022) Sugarcane (Saccharum officinarum L.) under saline stress: growth, productivity, technological quality, and industrial yield. Ind Crops Prod 188:. https://doi.org/10.1016/j.indcrop.2022.115642

  53. Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M (2017) Sugarcane water stress tolerance mechanisms and its implications on develo** biotechnology solutions. Front Plant Sci 8:1220–1226. https://doi.org/10.3389/fpls.2017.01077

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - Financing Code 001) and the Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE) for granting the scholarship.

Funding

There was no external funding for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirleide Maria de Menezes.

Ethics declarations

Consent to participate

The authors declare consent to participate.

Consent for publication

The authors declare consent for publication.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Menezes, S.M., da Silva, G.F., da Silva, M.M. et al. Pulsed drip irrigation reduces sugarcane water consumption and improves growth, productivity, sugar and ethanol yields. Bioenerg. Res. (2024). https://doi.org/10.1007/s12155-024-10729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-024-10729-4

Keywords

Navigation