Log in

The Versatility of Mixed Lignocellulose Feedstocks for Bioethanol Production: an Experimental Study and Empirical Prediction

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The development and use of renewable energy resources is a crucial solution for a sustainable energy strategy to decrease the dependence on fossil fuels. Lignocellulosic ethanol has gained recognition as a renewable energy resource vital for sustainable development. Currently, the research and industry sectors utilize a single type of lignocellulose biomass for ethanol production. However, this biomass dependency is a potential risk due to the global warming effect on biomass plantations. This study assessed the versatility of rice straw (RS), Napier grass (NG), and sugarcane bagasse (SB) as a mixed biomass for bioethanol production. The mixture of equal proportion of RS, NG, and SB in a 1:1:1 ratio produced higher concentration of bioethanol than individual biomasses. NaOH-pretreated samples were more effective than H2SO4 pretreated and untreated samples in bioethanol production. The NaOH-pretreated mixed sample yielded maximum bioethanol of 0.82% (v/v). About 0.43 g/g and 0.12 g/g of reducing sugars and ethanol, respectively, could be produced using RS, NG, and SB in the ratio of 1:1:1. This research indicates that different biomass types can replace one another in the event of limited resources, thus reducing the dependency on a particular biomass type for biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data underlying the results are available as part of the article and no additional source data are required.

References

  1. Mukherjee A, Banerjee S, Halder G (2018) Parametric optimization of delignification of rice straw through central composite design approach towards application in grafting. J Adv Res 14:11–23. https://doi.org/10.1016/j.jare.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saravanan A, Kumar PS, Jeevanantham S, Karishma S, Vo D-VN (2022) Recent advances and sustainable development of biofuels production from lignocellulosic biomass. Bioresour Technol 344:126203. https://doi.org/10.1016/j.biortech.2021.126203

    Article  CAS  PubMed  Google Scholar 

  3. Das PK, Das BP, Dash P (2020) Potentials of postharvest rice crop residues as a source of biofuel. In: Praveen Kumar R, Gnansounou E, Raman JK, Baskar G (eds) Refining biomass residues for sustainable energy and bioproducts. Academic Press, pp 275–301. https://doi.org/10.1016/B978-0-12-818996-2.00013-2

    Chapter  Google Scholar 

  4. Cotta MA (2012) Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5. Bioengineered 3(4):197–202. https://doi.org/10.4161/bioe.19874

    Article  PubMed  PubMed Central  Google Scholar 

  5. Negawo AT, Teshome A, Kumar A, Hanson J, Jones CS (2017) Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy 7(2):28. https://doi.org/10.3390/agronomy7020028

    Article  CAS  Google Scholar 

  6. Nimmanterdwong P, Chalermsinsuwan B, Østergård H, Piumsomboon P (2017) Environmental performance assessment of Napier grass for bioenergy production. J Clean Prod 165:645–655. https://doi.org/10.1016/j.jclepro.2017.07.126

    Article  Google Scholar 

  7. Kamarullah SH, Mydin MM, Omar W, Harith SS, Noor BHM, Alias NZA, Manap S, Mohamad R (2015) Surface morphology and chemical composition of Napier grass fibers. Malays J Anal Sci 19(4):889–895

    Google Scholar 

  8. Minmunin J, Limpitipanich P, Promwungkwa A (2015) Delignification of elephant grass for production of cellulosic intermediate. Energy Procedia 79:220–225. https://doi.org/10.1016/j.egypro.2015.11.468

    Article  CAS  Google Scholar 

  9. Mensah RQ, Yingkamheang N, Venkatachalam P, Show P-L, Mussatto SI, Sriariyanun M, Sukyai P, Parakulsuksatid P, Rattanaporn K (2023) Application of green produced xylooligosaccharides from sugarcane residues and their properties–recent progress towards sustainability. Bioresour Technol Rep 23:101537. https://doi.org/10.1016/j.biteb.2023.101537

    Article  CAS  Google Scholar 

  10. AboDalam H, Devra V, Ahmed FK, Li B, Abd-Elsalam KA (2022) Rice wastes for green production and sustainable nanomaterials: an overview. In: Abd-Elsalam KA, Periakaruppan R, Rajeshkumar S (eds) Nanobiotechnology for Plant Protection,Agri-Waste and Microbes for Production of Sustainable Nanomaterials. Elsevier, pp 707–728. https://doi.org/10.1016/B978-0-12-823575-1.00009-3

    Chapter  Google Scholar 

  11. Pinzi S, Dorado M (2011) Vegetable-based feedstocks for biofuels production. Handbook of biofuels production. In: Luque R, Campelo J, Clark J (eds) Woodhead Publishing Series in Energy, Handbook of Biofuels Production. Woodhead Publishing, pp 61–94. https://doi.org/10.1533/9780857090492.1.61

    Chapter  Google Scholar 

  12. Sriariyanun M, Gundupalli MP, Phakeenuya V, Phusamtisampan T, Cheng Y-S, Venkatachalam P (2023) Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms. J Appl Sci Eng 27:1985–2005. https://doi.org/10.6180/jase.202402_27(2).0001

    Article  Google Scholar 

  13. Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206. https://doi.org/10.1016/j.fuproc.2016.12.007

    Article  CAS  Google Scholar 

  14. Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  CAS  PubMed  Google Scholar 

  15. Panakkal EJ, Cheenkachorn K, Gundupalli MP, Kitiborwornkul N, Sriariyanun M (2021) Impact of sulfuric acid pretreatment of durian peel on the production of fermentable sugar and ethanol. J Indian Chem Soc 98(12):100264. https://doi.org/10.1016/j.jics.2021.100264

    Article  CAS  Google Scholar 

  16. Gundupalli MP, Kajiura H, Ishimizu T, Bhattacharyya D (2020) Alkaline hydrolysis of coconut pith: process optimization, enzymatic saccharification, and nitrobenzene oxidation of Kraft lignin. Biomass Convers Biorefin 1–19. https://doi.org/10.1007/s13399-020-00890-z

  17. Madadi M, Wang Y, Zhang R, Hu Z, Gao H, Zhan D, Yu H, Yang Q, Wang Y, Tu Y (2022) Integrating mild chemical pretreatments with endogenous protein supplement for complete biomass saccharification to maximize bioethanol production by enhancing cellulases adsorption in novel bioenergy Amaranthus. Ind Crops Prod 177:114471. https://doi.org/10.1016/j.indcrop.2021.114471

    Article  CAS  Google Scholar 

  18. Dharmalingam B, Tantayotai P, Panakkal EJ, Cheenkachorn K, Kirdponpattara S, Gundupalli MP, Cheng Y-S, Sriariyanun M (2022) Organic acid pretreatments and optimization techniques for mixed vegetable waste biomass conversion into biofuel production. BioEnergy Res 1–16. https://doi.org/10.1007/s12155-022-10517-y

  19. Trilokesh C, Uppuluri KB (2021) Biobutanol from lignocellulosic biomass and microalgae: Scope, technology, and economics. In: Ray RC (ed) Applied Biotechnology Reviews, Sustainable Biofuels. Academic Press, pp 163–223. https://doi.org/10.1016/B978-0-12-820297-5.00008-6

    Chapter  Google Scholar 

  20. Kumar R, Strezov V, Weldekidan H, He J, Singh S, Kan T, Dastjerdi B (2020) Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels. Renew Sustain Energy Rev 123:109763. https://doi.org/10.1016/j.rser.2020.109763

    Article  CAS  Google Scholar 

  21. Gonzales RR, Kumar G, Sivagurunathan P, Kim S-H (2017) Enhancement of hydrogen production by optimization of pH adjustment and separation conditions following dilute acid pretreatment of lignocellulosic biomass. Int J Hydrog Energy 42(45):27502–27511. https://doi.org/10.1016/j.ijhydene.2017.05.021

    Article  CAS  Google Scholar 

  22. Hashemi B, Sarker S, Lamb JJ, Lien KM (2021) Yield improvements in anaerobic digestion of lignocellulosic feedstocks. J Clean Prod 288:125447. https://doi.org/10.1016/j.jclepro.2020.125447

    Article  CAS  Google Scholar 

  23. Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol 2014:463074. https://doi.org/10.1155/2014/463074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saïed N, Khelifi M, Bertrand A, Tremblay GF, Aider M (2023) Effects of acid and alkali pretreatments on carbohydrate release from sweet sorghum and sweet pearl millet bagasse for bioethanol production. BioEnergy Res 1–15. https://doi.org/10.1007/s12155-023-10617-3

  25. Panakkal EJ, Sriariyanun M, Ratanapoompinyo J, Yasurin P, Cheenkachorn K, Rodiahwati W, Tantayotai P (2022) Influence of sulfuric acid pretreatment and inhibitor of sugarcane bagasse on the production of fermentable sugar and ethanol. Appl Sci Eng Progress 15(1). https://doi.org/10.1016/B978-0-12-820297-5.00008-6

  26. Tantayotai P, Gundupalli MP, Katam K, Rattanaporn K, Cheenkachorn K, Sriariyanun M (2022) In-depth investigation of the bioethanol and biogas production from organic and mineral acid pretreated sugarcane bagasse: comparative and optimization studies. Biocatal Agric Biotechnol 45:102499. https://doi.org/10.1016/j.bcab.2022.102499

    Article  CAS  Google Scholar 

  27. Yamamoto Y, Kishimura H, Kinoshita Y, Saburi W, Kumagai Y, Yasui H, Ojima T (2019) Enzymatic production of xylooligosaccharides from red alga dulse (Palmaria sp.) wasted in Japan. Process Biochem 82:117–122. https://doi.org/10.1016/j.procbio.2019.03.030

    Article  CAS  Google Scholar 

  28. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  29. Panakkal EJ, Cheenkachorn K, Chuetor S, Tantayotai P, Raina N, Cheng Y-S, Sriariyanun M (2022) Optimization of deep eutectic solvent pretreatment for bioethanol production from Napier grass. Sustain Energy Technol Assess 54:102856. https://doi.org/10.1016/j.seta.2022.102856

    Article  Google Scholar 

  30. Sriariyanun M, Kitiborwornkul N, Tantayotai P, Rattanaporn K, Show P-L (2022) One-pot ionic liquid-mediated bioprocess for pretreatment and enzymatic hydrolysis of rice straw with ionic liquid-tolerance bacterial cellulase. Bioengineering 9(1):17. https://doi.org/10.3390/bioengineering9010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sriariyanun M, Mutrakulcharoen P, TepaamornDech S, Cheenkachorn K, Rattanaporn K (2019) A rapid spectrophotometric method for quantitative determination of ethanol in fermentation products. Orient J Chem 35(2):744–750. https://doi.org/10.13005/ojc/350234

    Article  CAS  Google Scholar 

  32. Bakker R, Elbersen H, Poppens R, Lesschen JP (2013) Rice straw and wheat straw-potential feedstocks for the biobased economy. NL Agency Ministry of Economic Affairs, Wageningen UR, Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands

  33. Gundupalli MP, Sahithi SA, Jayex EP, Asavasanti S, Yasurin P, Cheng Y-S, Sriariyanun M (2022) Combined effect of hot water and deep eutectic solvent (DES) pretreatment on a lignocellulosic biomass mixture for improved saccharification efficiency. Bioresour Technol Rep 17:100986. https://doi.org/10.1016/j.biteb.2022.100986

    Article  CAS  Google Scholar 

  34. Kulshreshtha A (2022) Sustainable energy generation from municipal solid waste. In: Hussain CM, Singh S, Goswami L (eds) Waste-to-Energy Approaches Towards Zero Waste. Elsevier, pp 315–342. https://doi.org/10.1016/B978-0-323-85387-3.00005-7

    Chapter  Google Scholar 

  35. Tajmirriahi M, Momayez F, Karimi K (2021) The critical impact of rice straw extractives on biogas and bioethanol production. Bioresour Technol 319:124167. https://doi.org/10.1016/j.biortech.2020.124167

    Article  CAS  PubMed  Google Scholar 

  36. Das SP, Gupta A, Das D, Goyal A (2016) Enhanced bioethanol production from water hyacinth (Eichhornia crassipes) by statistical optimization of fermentation process parameters using Taguchi orthogonal array design. Int Biodeterior Biodegrad 109:174–184. https://doi.org/10.1016/j.ibiod.2016.01.008

    Article  CAS  Google Scholar 

  37. Rezania S, Alizadeh H, Park J, Din MFM, Darajeh N, Ebrahimi SS, Saha BB, Kamyab H (2019) Effect of various pretreatment methods on sugar and ethanol production from cellulosic water hyacinth. BioResources 14(1):592–606

    CAS  Google Scholar 

  38. Paz-Cedeno FR, Carceller JM, Iborra S, Donato RK, Rodriguez AFR, Morales MA, Solorzano-Chavez EG, Roldán IUM, de Paula AV, Masarin F (2022) Stability of the Cellic CTec2 enzymatic preparation immobilized onto magnetic graphene oxide: assessment of hydrolysis of pretreated sugarcane bagasse. Ind Crops Prod 183:114972. https://doi.org/10.1016/j.indcrop.2022.114972

    Article  CAS  Google Scholar 

  39. Elalami D, Barakat A (2021) State of the art of energy production from agricultural residues using thermochemical and biological processes. Clean Energy and Resources Recovery, vol 1. Biomass Waste Based Biorefineries. Elsevier, pp 1–24. https://doi.org/10.1016/B978-0-323-85223-4.00008-7

    Chapter  Google Scholar 

  40. Sanchis-Sebastiá M, Gomis-Fons J, Galbe M, Wallberg O (2020) Techno-economic evaluation of biorefineries based on low-value feedstocks using the BioSTEAM software: a case study for animal bedding. Processes 8(8):904. https://doi.org/10.3390/pr8080904

    Article  CAS  Google Scholar 

  41. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen QA, Yang J, Bae H-J (2017) Bioethanol production from individual and mixed agricultural biomass residues. Ind Crops Prod 95:718–725. https://doi.org/10.1016/j.indcrop.2016.11.040

    Article  CAS  Google Scholar 

  43. Kumar N, Yadav A, Singh G, Singh A, Kumar P, Aggarwal NK (2023) Comparative study of ethanol production from sodium hydroxide pretreated rice straw residue using Saccharomyces cerevisiae and Zymomonas mobilis. Arch Microbiol 205(4):146. https://doi.org/10.1007/s00203-023-03468-1

    Article  CAS  PubMed  Google Scholar 

  44. Tsai MH, Lee WC, Kuan WC, Sirisansaneeyakul S, Savarajara A (2018) Evaluation of different pretreatments of Napier grass for enzymatic saccharification and ethanol production. Energy Sci Eng 6(6):683–692. https://doi.org/10.1002/ese3.243

    Article  CAS  Google Scholar 

  45. de Carvalho DM, de Queiroz JH, Colodette JL (2016) Assessment of alkaline pretreatment for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Ind Crops Prod 94:932–941. https://doi.org/10.1016/j.indcrop.2016.09.069

    Article  CAS  Google Scholar 

  46. Kannah RY, Sivashanmugham P, Kavitha S, Banu JR (2020) Valorization of food waste for bioethanol and biobutanol production. In: Rajesh Banu J, Kumar G, Gunasekaran M, Kavitha S (eds) Food Waste to Valuable Resources. Academic Press, pp 39–73. https://doi.org/10.1016/B978-0-12-818353-3.00003-1

    Chapter  Google Scholar 

  47. Yirgu Z, Leta S, Hussen A, Khan MM (2023) Pretreatment and optimization of reducing sugar extraction from indigenous microalgae grown on brewery wastewater for bioethanol production. Biomass Convers Biorefin 13(8):6831–6845. https://doi.org/10.1007/s13399-021-01779-1

    Article  CAS  Google Scholar 

  48. Guo H, Zhao Y, Chang J-S, Lee D-J (2022) Inhibitor formation and detoxification during lignocellulose biorefinery: a review. Bioresour Technol 361:127666. https://doi.org/10.1016/j.biortech.2022.127666

    Article  CAS  PubMed  Google Scholar 

  49. **e X, Chen M, Tong W, Song K, Wang J, Wu S, Hu J, ** Y, Chu Q (2023) Comparative study of acid-and alkali-catalyzed 1, 4-butanediol pretreatment for co-production of fermentable sugars and value-added lignin compounds. Biotechnol Biofuels Bioprod 16(1):1–16. https://doi.org/10.1186/s13068-023-02303-5

    Article  CAS  Google Scholar 

  50. Abeysuriya DI, Sethunga G, Rathnayake M (2023) Process simulation–based scenario analysis of scaled-up bioethanol production from water hyacinth. Biomass Convers Biorefin 1–16. https://doi.org/10.1007/s13399-023-03891-w

  51. Todri E, Amenaghawon AN, Del Val IJ, Leak DJ, Kontoravdi C, Kucherenko S, Shah N (2014) Global sensitivity analysis and meta-modeling of an ethanol production process. Chem Eng Sci 114:114–127. https://doi.org/10.1016/j.ces.2014.04.027

    Article  CAS  Google Scholar 

  52. Ovalles C, Rogel E, Morazan H, Moir ME (2018) The importance of mass balances: case studies of evaluation of asphaltene dispersants and antifoulants. The Boduszynski continuum: contributions to the understanding of the molecular composition of petroleum. ACS Symposium Series. American Chemical Society, pp 25–49. https://doi.org/10.1021/bk-2018-1282.ch002

    Chapter  Google Scholar 

  53. Shukla A, Kumar D, Girdhar M, Kumar A, Goyal A, Malik T, Mohan A (2023) Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. Biotechnol Biofuels Bioprod 16(1):44. https://doi.org/10.1186/s13068-023-02295-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by National Science, Research and Innovation Fund (NSRF), King Mongkut’s University of Technology North Bangkok (Grant Contract No. KMUTNB-67-KNOW-07) and Srinakharinwirot University.

Author information

Authors and Affiliations

Authors

Contributions

KC: investigation, writing—original draft, conceptualization. RQM: methodology, reviewing and editing. BD: investigation, writing—original draft. MPG: reviewing and editing. KR: reviewing and editing, data curation. PT: data curation, funding acquisition. PLS: reviewing and editing. MS: conceptualization, data curation, writing—reviewing and editing, funding acquisition, project administration.

Corresponding author

Correspondence to Malinee Sriariyanun.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheenkachorn, K., Mensah, R.Q., Dharmalingam, B. et al. The Versatility of Mixed Lignocellulose Feedstocks for Bioethanol Production: an Experimental Study and Empirical Prediction. Bioenerg. Res. 17, 1004–1014 (2024). https://doi.org/10.1007/s12155-023-10705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10705-4

Keywords

Navigation