Log in

Biopolymers Synthesized by Microalgae Grown in Wastewater: a Technological Survey

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The aim of this review is to provide a comprehensive understanding by surveying patent documents and scientific articles on current progress in obtaining biopolymers from microalgae grown in wastewater. Raising critical points, current market panorama, trends and perspectives for the implementation of the integrated microalgae biorefinery. The searches for articles and patents were carried out using the terms microalgae, algae, polyhydroxyalkanoate, polymer, and biopolymer. About 57 patents and 27 articles directly related to the topic were found. The USA is the country with the highest number of patents (32), followed by the Republic of Korea (12). Companies are the biggest depositors (50%). Currently, the focus of research is centered on increasing the efficiency of treatments, aiming at large-scale production. Scientific articles show that little has been researched on the extraction of biopolymers from microalgae grown in wastewater. The ability of microalgae to act in the bioremediation of effluents stands out, as well as in the production of bioproducts of industrial interest. However, there is a gap regarding the economic feasibility of implementing current methods to obtain biopolymers, due to the high cost of production (2 × current methods). In addition, more research must be carried out, seeking to evaluate the techno-economic scenario (focused currently on PHB) and bioprospecting new strains to implement the integrated biorefinery concept. These are strategies that could increase the profitability of this sector, and enabling the use of microalgae to obtain biopolymers from effluents is considered a key factor to promote an industrial shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pessôa LC, Deamici KM, Pontes LAM, Druzian JI, Assis DJ (2021) Technological prospection of microalgae-based biorefinery approach for effluent treatment. Algal Res 60:102504. https://doi.org/10.1016/j.algal.2021.102504

    Article  Google Scholar 

  2. Silva DA, Cardoso LG, Silva JSJ, Souza CO, Lemos PVF, Almeida PF, Ferreira ES, Lombardi AT, Druzian JI (2022) Strategy for the cultivation of Chlorella vulgaris with high biomass production and biofuel potential in wastewater from the oil industry. Environ Technol Innov 25:102204. https://doi.org/10.1016/j.eti.2021.102204

    Article  CAS  Google Scholar 

  3. Pessôa LC, Cruz EP, Deamici KM, Andrade BB, Carvalho NS, Vieira SR, Silva JBA, Pontes LAM, Souza CO, Druzian JI, Assis DJ (2022) A review of microalgae-based biorefineries approach for produced water treatment: barriers, pretreatments, supplementation, and perspectives. J Environ Chem Eng 10:108096. https://doi.org/10.1016/j.jece.2022.108096

    Article  CAS  Google Scholar 

  4. Arias DM, García J, Uggetti E (2020) Production of polymers by cyanobacteria grown in wastewater: current status, challenges and future perspectives. N Biotechnol 55:46–57. https://doi.org/10.1016/j.nbt.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  5. Baranwal J, Barse B, Fais A, Delogu GL, Kumar A (2022) Biopolymer: a sustainable material for food and medical applications. Polymers 14(5):983. https://doi.org/10.3390/polym14050983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khanra A, Vasistha S, Rai MP, Cheah WY, Khoo KS, Chew KW, Chuah LF, Show PL (2022) Green bioprocessing and applications of microalgae-derived biopolymers as a renewable feedstock: circular bioeconomy approach. Environ Technol Innov 28:102872. https://doi.org/10.1016/j.eti.2022.102872

    Article  CAS  Google Scholar 

  7. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635

    Article  CAS  Google Scholar 

  8. Mehariya S, Plohn M, Jablonski P, Stagge S, Jönsson LJ, Funk C (2023) Biopolymer production from biomass produced by Nordic microalgae grown in wastewater. Bioresour Technol 376:128901. https://doi.org/10.1016/j.biortech.2023.128901

    Article  CAS  PubMed  Google Scholar 

  9. Ammar SH, Khadim HJ, Mohamed AI (2018) Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production. Environ Technol Innov 10:132–142. https://doi.org/10.1016/j.eti.2018.02.002

    Article  Google Scholar 

  10. Gonçalves AL, Pires JCM, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415. https://doi.org/10.1016/j.algal.2016.11.008

    Article  Google Scholar 

  11. Matamoros V, Gutiérrez R, Ferre I, García J, Bayona JM (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater 288:34–42. https://doi.org/10.1016/j.jhazmat.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  12. Kadir WNA, Lam MK, Uemura Y, Lim JW, Lee KT (2018) Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: a review. Energy Convers Manag 171:1416–1429. https://doi.org/10.1016/j.enconman.2018.06.074

    Article  CAS  Google Scholar 

  13. Roostaei J, Zhang Y (2017) Spatially explicit life cycle assessment: opportunities and challenges of wastewater-based algal biofuels in the United States. Algal Res 24:395–402. https://doi.org/10.1016/j.algal.2016.08.008

    Article  Google Scholar 

  14. Murata MM, Morioka LRI, Marques JBS, Bosso A, Suguimoto H (2021) What do patents tell us about microalgae in agriculture? AMB Expr 11:154. https://doi.org/10.1186/s13568-021-01315-4

    Article  Google Scholar 

  15. Tolliver C, Fujii H, Keeley AR, Managi S (2020) Green innovation and finance in Asia. Asian Econ Policy Rev. https://doi.org/10.1111/aepr.12320

    Article  Google Scholar 

  16. Dalmarco G, Dewes MF, Zawislak PA, Padula AD (2011) Universities’ intellectual property: path for innovation or patent competition? J Technol Manag Innov 6:159–170. https://doi.org/10.4067/S0718-27242011000300012

    Article  Google Scholar 

  17. Pronay S, Keszey T, Buzás N, Sakai T, Inai K (2021) Performance of university technology transfer offices: evidence from Europe and Japan. Int J Product Perform Manag 71(4):1343–1364. https://doi.org/10.1108/IJPPM-03-2020-0091

    Article  Google Scholar 

  18. Barbosa MJ, Janssen M, Südfeld C, D’Adamo S, Wijffels RH (2023) Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol 4(3):452–471. https://doi.org/10.1016/j.tibtech.2022.12.017

    Article  CAS  Google Scholar 

  19. Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae – a review. J Algal Biomass Util 3:89–100

    Google Scholar 

  20. Stoyneva-Gärtner M, Uzunov B, Gärtner G (2020) Enigmatic microalgae from aeroterrestrial and extreme habitats in cosmetics: the potential of the untapped natural sources. Cosmetics 7:27. https://doi.org/10.3390/cosmetics7020027

    Article  Google Scholar 

  21. Jankowska E, Sahu AK, Oleskowicz-Popiel P (2017) Biogas from microalgae: review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sustain Energy Rev 75:692–709. https://doi.org/10.1016/j.rser.2016.11.045

    Article  CAS  Google Scholar 

  22. Matos J, Cardoso C, Bandarra NM, Afonso C (2017) Microalgae as healthy ingredients for functional food: a review. Food Funct 8:2672–2685. https://doi.org/10.1039/C7FO00409E

    Article  CAS  PubMed  Google Scholar 

  23. Khanra S, Mondal M, Halder G, Tiwari ON, Gayen K, Bhowmick TK (2018) Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: a review. Food Bioprod Process 110:60–84. https://doi.org/10.1016/j.fbp.2018.02.002

    Article  CAS  Google Scholar 

  24. Kumar AN, Chatterjee S, Hemalatha M, Althuri A, Min B, Kim SH, Mohan SV (2020) Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresour Technol 296:122315. https://doi.org/10.1016/j.biortech.2019.122315

    Article  CAS  Google Scholar 

  25. Ma X, Chen Y, Liu F, Zhang S, Wei Q (2021) Enhanced tolerance and resistance characteristics of Scenedesmus obliquus FACHB-12 with K3 carrier in cadmium polluted water. Algal Res 55:102267. https://doi.org/10.1016/j.algal.2021.102267

    Article  Google Scholar 

  26. Komolafe O, Orta SBV, Monje-Ramirez I, Noguez IY, Harvey AP, Ledesma MTO (2014) Biodiesel production from indigenous microalgae grown in wastewater. Bioresour Technol 154:297–304. https://doi.org/10.1016/j.biortech.2013.12.048

    Article  CAS  PubMed  Google Scholar 

  27. Soares AT, Junior JGM, Lopes RG, Derner RB, Filho NRA (2016) Improvement of the extraction process for high commercial value pigments from Desmodesmus sp. microalgae. J Braz Chem Soc 27:1083–1093. https://doi.org/10.5935/0103-5053.20160004

    Article  CAS  Google Scholar 

  28. Xu Y, Boeing WJ (2014) Modeling maximum lipid productivity of microalgae: review and next step. Renew Sustain Energy Rev 32:29–39. https://doi.org/10.1016/j.rser.2014.01.002

    Article  CAS  Google Scholar 

  29. Taleb A, Pruvost J, Legrand J, Marec H, Le-Gouic B, Mirabella B, Takache H (2015) Development and validation of a screening procedure of microalgae for biodiesel production: application to the genus of marine microalgae Nannochloropsis. Bioresour Technol 177:224–232. https://doi.org/10.1016/j.biortech.2014.11.068

    Article  CAS  PubMed  Google Scholar 

  30. Martínez MR, Ulloa G, Saldívar J, Beristain R, Meza-Escalante ER (2017) The best recovery of Nannochloropsis oculata from the culture broth and effect on content of lipids. J Renew Sustain Energy 6:013111. https://doi.org/10.1063/1.5064326

    Article  CAS  Google Scholar 

  31. Liu J, Song Y, Qiu W (2017) Oleaginous microalgae Nannochloropsis as a new model for biofuel production: review & analysis. Renew Sustain Energy Rev 72:154–162. https://doi.org/10.1016/j.rser.2016.12.120

    Article  CAS  Google Scholar 

  32. Safi C, Zebib B, Merah O, Pontalie PY, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sustain Energy Rev 35:265–278. https://doi.org/10.1016/j.rser.2014.04.007

    Article  Google Scholar 

  33. Costa SS, Miranda AL, Assis DJ, Souza CO, Morais MG, Costa JAV, Druzian JI (2018) Efficacy of Spirulina sp. polyhydroxyalkanoates extraction methods and influence on polymer properties and composition. Algal Res 33:231–238. https://doi.org/10.1016/j.algal.2018.05.016

    Article  Google Scholar 

  34. Kuntzler SG, De Almeida ACA, Costa JAV, De Morais MG (2018) Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: a novel nanomaterial with antibacterial activity. Int J Biol Macromol 113:1008–1014. https://doi.org/10.1016/j.ijbiomac.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  35. Cassuriaga APA, Moraes L, Morais MG, Costa JAV (2020) Polyhydroxybutyrate production and increased macromolecule content in Chlamydomonas reinhardtii cultivated with xylose and reduced nitrogen levels. Int J Biol Macromol 158:875–883. https://doi.org/10.1016/j.ijbiomac.2020.04.273

    Article  CAS  PubMed  Google Scholar 

  36. **e P, Chen C, Zhang C, Su G, Ren N, Ho SH (2020) Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae. Water Res 172:115475. https://doi.org/10.1016/j.watres.2020.115475

    Article  CAS  PubMed  Google Scholar 

  37. Silva LF, Taciro MK, Raicher G, Piccoli RAM, Mendonça TT, Lopes MSG, Gomez JGC (2014) Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and etanol. Int J Biol Macromol 71:2–7. https://doi.org/10.1016/j.ijbiomac.2014.06.065

    Article  CAS  PubMed  Google Scholar 

  38. García G, Sosa-Hernández JE, Rodas-Zuluaga LI, Castillo-Zacarías C, Iqbal H, Parra-Saldívar R (2021) Accumulation of PHA in the microalgae Scenedesmus sp. under nutrient-deficient conditions. Polymers 13:131–153. https://doi.org/10.3390/polym13010131

    Article  CAS  Google Scholar 

  39. Ketife A, Al Momani F, Judd S (2020) A bioassimilation and bioaccumulation model for the removal of heavy metals from wastewater using algae: new strategy. Process Saf Environ Prot 144:52–64. https://doi.org/10.1016/j.psep.2020.07.018

    Article  CAS  Google Scholar 

  40. Almomani F (2020) Kinetic modeling of microalgae growth and CO2 bio-fixation using central composite design statistical approach. Sci Total Environ 720. https://doi.org/10.1016/j.scitotenv.2020.137594

  41. AlMomani F, Örmeci B (2020) Assessment of algae-based wastewater treatment in hot climate region: treatment performance and kinetics. Process Saf Environ Prot 141:140–149. https://doi.org/10.1016/j.psep.2020.03.031

    Article  CAS  Google Scholar 

  42. Thapa S, Bharti A, Prasanna R (2017) Algal biofilms and their biotechnological significance. Algal Green Chem 285–303. https://doi.org/10.1016/B978-0-444-63784-0.00014-X

  43. Tang CC, Zhang X, He ZW, Tian Y, Wang XC (2021) Role of extracellular polymeric substances on nutrients storage and transfer in algal-bacteria symbiosis sludge system treating wastewater. Bioresour Technol 331:125010. https://doi.org/10.1016/j.biortech.2021.125010

    Article  CAS  PubMed  Google Scholar 

  44. Yang Q, Xu W, Luan T, Pan T, Yang L, Lin L (2021) Comparative responses of cell growth and related extracellular polymeric substances in Tetraselmis sp. to nonylphenol, bisphenol A and 17α-ethinylestradiol. Environ Pollut 274:116605. https://doi.org/10.1016/j.envpol.2021.116605

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen TDP, Vo CT, Nguyen-Sy T, Tran TNT, Le TVA, Chiu CY, Sankaran R, Show PL (2020) Utilization of microalgae for self-regulation of extracellular polymeric substance production. Biochem Eng J 159:107616. https://doi.org/10.1016/j.bej.2020.107616

    Article  CAS  Google Scholar 

  46. Vo HNP, Ngo HH, Guo W, Nguyen KH, Chang SW, Nguyen DD, Liu Y, Liu Y, Ding N, Bui XT (2020) Micropollutants cometabolism of microalgae for wastewater remediation: effect of carbon sources to cometabolism and degradation products. Water Res 183:115974. https://doi.org/10.1016/j.watres.2020.115974

    Article  CAS  PubMed  Google Scholar 

  47. Wang S, Ji B, Zhang M, Ma Y, Gu J, Liu Y (2020) Defensive responses of microalgal-bacterial granules to tetracycline in municipal wastewater treatment. Bioresour Technol 312:123605. https://doi.org/10.1016/j.biortech.2020.123605

    Article  CAS  PubMed  Google Scholar 

  48. Arcila JS, Buitrón G (2017) Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment. Algal Res 27:190–197. https://doi.org/10.1016/j.algal.2017.09.011

    Article  Google Scholar 

  49. Wang M, Kuo-Dahab WC, Dolan S, Park C (2014) Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour Technol 154:131–137. https://doi.org/10.1016/j.biortech.2013.12.047

    Article  CAS  PubMed  Google Scholar 

  50. Tang CC, Wang TY, Zhang XY, Wang R, He ZW, Li Z, Wang XC (2022) Role of types and dosages of cations with low valance states on microalgal-bacterial symbiosis system treating wastewater. Bioresour Technol 361:127755. https://doi.org/10.1016/j.biortech.2022.127755

    Article  CAS  PubMed  Google Scholar 

  51. Wicker RJ, Autio H, Daneshvar E, Sarkar B, Bolan N, Kumar V, Bhatnagar A (2022) The effects of light regime on carbon cycling, nutrient removal, biomass yield, and polyhydroxybutyrate (PHB) production by a constructed photosynthetic consortium. Bioresour Technol 363:127912. https://doi.org/10.1016/j.biortech.2022.127912

    Article  CAS  PubMed  Google Scholar 

  52. AlMomani F, Shawaqfah M, Alsarayreh M, Khraisheh M, Hameed BH, Naqvi S, Berkani M, Varjani S (2022) Develo** pretreatment methods to promote the production of biopolymer and bioethanol from residual algal biomass (RAB). Algal Res 68:102895. https://doi.org/10.1016/j.algal.2022.102895

    Article  Google Scholar 

  53. Liu G, Miao X (2017) Switching cultivation for enhancing biomass and lipid production with extracellular polymeric substance as co-products in Heynigia riparia SX01. Bioresour Technol 227:214–220. https://doi.org/10.1016/j.biortech.2016.12.039

    Article  CAS  PubMed  Google Scholar 

  54. Kumari P, Kiran BR, Mohan SV (2022) Polyhydroxybutyrate production by Chlorella sorokiniana SVMIICT8 under Nutrient-deprived mixotrophy. Bioresour Technol 354:127135. https://doi.org/10.1016/j.biortech.2022.127135

    Article  CAS  PubMed  Google Scholar 

  55. Price S, Kuzhiumparambil U, Pernice M, Ralph PJ (2020) Cyanobacterial polyhydroxybutyrate for sustainable bioplastic production: critical review and perspectives. J Environ Chem Eng 8(4):104007. https://doi.org/10.1016/j.jece.2020.104007

    Article  CAS  Google Scholar 

  56. Wang J, Liu S, Huang J, Cui R, Xu Y, Song Z (2023) Genetic engineering strategies for sustainable polyhydroxyalkanoate (PHA) production from carbon-rich wastes. Environ Technol Innov 30:103069. https://doi.org/10.1016/j.eti.2023.103069

    Article  CAS  Google Scholar 

  57. Kosseva MR, Rusbandi E (2018) Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromol 107:762–778. https://doi.org/10.1016/j.ijbiomac.2017.09.054

    Article  CAS  PubMed  Google Scholar 

  58. Price S, Kuzhiumparambil U, Pernice M, Ralph P (2022) Techno-economic analysis of cyanobacterial PHB bioplastic production. J Environ Chem Eng 10:107502. https://doi.org/10.1016/j.jece.2022.107502

    Article  CAS  Google Scholar 

  59. Gaignard C, Laroche C, Pierre G, Dubessay P, Delattre C, Gardarin C, Gourvil P, Dubuffet A, Michaud P (2019) Screening of marine microalgae: investigation of new exopolysaccharide producers. Algal Res 44:101711. https://doi.org/10.1016/j.algal.2019.101711

    Article  Google Scholar 

  60. Katiyar R, Banerjee S, Arora A (2021) Recent advances in the integrated biorefinery concept for the valorization of algal biomass through sustainable routes. Biofuel Bioprod Biorefin 15:879–898. https://doi.org/10.1002/bbb.2187

    Article  CAS  Google Scholar 

  61. Lee JC, Lee B, Heo J, Kim HW, Lim H (2019) Techno-economic assessment of conventional and direct-transesterification processes for microalgal biomass to biodiesel conversion. Bioresour Technol 294:122173. https://doi.org/10.1016/j.biortech.2019.122173

    Article  CAS  PubMed  Google Scholar 

  62. Cardoso LG, Lemos PVF, de Souza CO, Oliveira MBPP, Chinalia FA (2022) Current advances in phytoremediation and biochemical composition of Arthrospira (Spirulina) grown in aquaculture wastewater. Aquac Res 53:4931–4943

    Article  CAS  Google Scholar 

  63. Fal S, Smouni A, Arroussi HE (2023) Integrated microalgae-based biorefinery for wastewater treatment, industrial CO2 sequestration and microalgal biomass valorization: a circular bioeconomy approach. Environ Adv 12:100365. https://doi.org/10.1016/j.envadv.2023.100365

    Article  CAS  Google Scholar 

  64. Chhandama MVL, Rai PK, Lalawmpuii, (2023) Coupling bioremediation and biorefinery prospects of microalgae for circular economy. Bioresour Technol Rep 22:101479. https://doi.org/10.1016/j.biteb.2023.101479

    Article  CAS  Google Scholar 

  65. Chang Y, Show P, Lan JC, Tsai J, Huang C (2018) Isolation of C-phycocyanin from Spirulina platensis microalga using Ionic liquid based aqueous two-phase system. Bioresour Technol 270:320–327. https://doi.org/10.1016/j.biortech.2018.07.138

    Article  CAS  PubMed  Google Scholar 

  66. Rodrigues RDP, de Lima PF, Santiago-Aguiar RS, Rocha MVP (2019) Evaluation of protic ionic liquids as potential solvents for the heating extraction of phycobiliproteins from Spirulina (Arthrospira) platensis. Algal Res 38:101391. https://doi.org/10.1016/j.algal.2018.101391

    Article  Google Scholar 

  67. Fawcett CA, Senhorinho GNA, Laamanen CA, Scott JA (2022) Microalgae as an alternative to oil crops for edible oils and animal feed. Algal Res 64:102663. https://doi.org/10.1016/j.algal.2022.102663

    Article  Google Scholar 

  68. Dos Santos MGB, Duarte RL, Maciel AM, Abreu M, Reis A, de Mendonça HV (2020) Microalgae biomass production for biofuels in brazilian scenario: a critical review. Bioenergy Res 14:23–42. https://doi.org/10.1007/s12155-020-10180-1

    Article  Google Scholar 

  69. Okeke ES, Ejeromedoghene O, Okoye CO, Ezeorba TPC, Nyaruaba R, Ikechukwu CK, Oladipo A, Orege JI (2022) Microalgae biorefinery: an integrated route for the sustainable production of high-value-added products. Energy Convers Manag X 16:100323. https://doi.org/10.1016/j.ecmx.2022.100323

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by FAPESB—Research Support Foundation of the State of Bahia, Brazil. The CNPq—National Council for Scientific and Technological Development, Brazil (Processes CNPq 44039/2019–3 and 134194/2019–5 and INCT-MIDAS CNPq 465594/2014–0) and CAPES—Coordination for the Improvement of Higher Education Personnel, Brazil (CAPES–UFBA).

Author information

Authors and Affiliations

Authors

Contributions

AVSB, BBA, and LGC contributed to the conceptualization, method development, investigation, writing—original draft, and writing—revision and editing. PPLGT, JSS, RMAM, JBAS, DJA, and COS contributed to the formal analysis and writing—review and editing of the article.

Corresponding author

Correspondence to Lucas Guimarães Cardoso.

Ethics declarations

Competing Interests

The authors declare competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Borges, A.V., Andrade, B.B., Santana, J.S. et al. Biopolymers Synthesized by Microalgae Grown in Wastewater: a Technological Survey. Bioenerg. Res. 17, 73–86 (2024). https://doi.org/10.1007/s12155-023-10680-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10680-w

Keywords

Navigation