Log in

Exploring the Potential of Coffee Husks as a Raw Material for Second-Generation Ethanol Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Bioeconomy is a sustainable development strategy involving the production of high-value products using renewable resources and by-products instead of new raw materials to avoid waste. Second-generation ethanol is essential for producing high-value products from residues, and new sources of lignocellulosic biomass are crucial. Coffee is an important agricultural product: in Brazil, a major world producer, 3 million tons of coffee were produced in 2022. Coffee husks, a by-product of coffee, are a potential raw material for use in second-generation ethanol production. The overall purpose of this study was to evaluate the potential of this residue for ethanol production. A compositional analysis of coffee husks showed a high lignin content of 42%. The coffee husks were subjected to aqueous, acid, and alkali pretreatments, and the chemical composition of each fraction was determined. The lignin contents were high: 46%, 52%, and 42%, respectively. The production of yeast inhibitors, furfural, and hydroxymethylfurfural and also the production of reducing sugars in the liquid fraction were determined to verify the severity of the pretreatments. The pretreated material was saccharified to produce glucose. The saccharification process was optimized based on pH and temperature conditions to achieve maximum enzyme efficiency with conversion yield of 16.2%. The optimal conditions were pH 5.5 and a temperature range of 30–75°C. The second optimization process was carried out for the enzyme load and biomass concentration. The condition producing the highest glucose concentration was a biomass loading of 11–14% and an enzyme concentration of 20–25 FPU/g. The optimized conditions for saccharification produced 5 g/L of glucose. For biomass conversion yield, the 3.2% biomass and 25 FPU/g provided highest efficiency, 24.46%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, Almeida, M. N., upon reasonable request.

References

  1. Vandenberghe LPS, Valladares-Diestra KK, Bittencourt GA, Zevallos Torres LA, Vieira S, Karp SG, Sydney EB, de Carvalho JC, Thomaz Soccol V, Soccol CR (2022) Beyond sugar and ethanol: the future of sugarcane biorefineries in Brazil. Renew Sust Energ Rev 167:112721. https://doi.org/10.1016/j.rser.2022.112721

    Article  CAS  Google Scholar 

  2. Liu Y, Cruz-Morales P, Zargar A, Belcher MS, Pang B, Englund E, Dan Q, Yin K, Keasling JD (2021) Biofuels for a sustainable future. Cell 184:1636–1647. https://doi.org/10.1016/j.cell.2021.01.052

    Article  CAS  PubMed  Google Scholar 

  3. RFA: Renewable Fuels Association (2023), Annual fuel ethanol production, https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production. Accessed 7 Apr 2023

  4. Broda M, Yelle DJ, Serwańska K (2022) Bioethanol production from lignocellulosic biomass—challenges and solutions. Molecules 27(24):8717. https://doi.org/10.3390/molecules27248717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sydney EB, Letti LAJ, Karp SG, Sydney ACN, LPS V, de Carvalho JC, Woiciechowski AL, ABP M, Soccol VT, Soccol CR (2019) Current analysis and future perspective of reduction in worldwide greenhouse gases emissions by using first and second generation bioethanol in the transportation sector. Bioresour Technol Reports 7:100234. https://doi.org/10.1016/j.biteb.2019.100234

    Article  Google Scholar 

  6. Qiao J, Cui H, Wang M, Fu X, Wang X, Li X (2022) Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel. Bioresour Technol 360:127516. https://doi.org/10.1016/j.biortech.2022.127516

    Article  CAS  PubMed  Google Scholar 

  7. Li M, Jiang B, Wu W, Wu S, Yang Y, Song J, Ahmad M, ** Y (2022) Current understanding and optimization strategies for efficient lignin-enzyme interaction: a review. Int J Biol Macromol 195:274–286. https://doi.org/10.1016/j.ijbiomac.2021.11.188

    Article  CAS  PubMed  Google Scholar 

  8. Zhao L, Sun ZF, Zhang CC, Nan J, Ren NQ, Lee DJ, Chen C (2022) Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives. Bioresour Technol 343:126123. https://doi.org/10.1016/j.biortech.2021.126123

    Article  CAS  PubMed  Google Scholar 

  9. Sun Z, De SA, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118:614–678. https://doi.org/10.1021/acs.chemrev.7b00588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manikandan S, Vickram S, Sirohi R, Subbaiya R, Krishnan RY, Karmegam N, Sumathijones C, Rajagopal R, Chang SW, Ravindran B, Awasthi MK (2023) Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. Bioresour Technol 372:128679. https://doi.org/10.1016/j.biortech.2023.128679

    Article  CAS  PubMed  Google Scholar 

  11. Yaashikaa PR, Kumar PS, Varjani S (2022) Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: a critical review. Bioresour Technol 343:126126. https://doi.org/10.1016/j.biortech.2021.126126

    Article  CAS  PubMed  Google Scholar 

  12. USDA (2023) Coffee: world markets and trade. https://www.fas.usda.gov/data/coffee-world-markets-and-trade. Accessed 15 Jul 2023

  13. Bekalo SA, Reinhardt HW (2010) Fibers of coffee husk and hulls for the production of particleboard. Mater Struct Constr 43:1049–1060. https://doi.org/10.1617/s11527-009-9565-0

    Article  CAS  Google Scholar 

  14. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257

    Article  CAS  Google Scholar 

  15. Maitan-alfenas GP, Michael E, Ferreira R, Ris B, Nogueira G, Galvao G, Campos D, Ferreira A, Vries RP, Guimarães VM (2015) The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails: a comparative study. Bioresour Technol 192:670–676. https://doi.org/10.1016/j.biortech.2015.05.109

    Article  CAS  PubMed  Google Scholar 

  16. Bergmeyer HU, Bernt E (1974) Determination of glucose with oxidase analysis, and peroxidase. Academic Press, New York

    Google Scholar 

  17. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

  18. Zappala M, Fallico B, Arena E, Verzera A (2005) Methods for the determination of HMF in honey: a comparison. Food Control 16:273–277. https://doi.org/10.1016/j.foodcont.2004.03.006

    Article  CAS  Google Scholar 

  19. TAPPI: T 222 om-02 (2006) Acid-insoluble lignin in wood and pulp. TAPPI Press, Atlanta, GA, USA

    Google Scholar 

  20. Li Y, Song W, Han X, Wang Y, Rao S (2022) Recent progress in key lignocellulosic enzymes: enzyme discovery, molecular modifications, production, and enzymatic biomass saccharification. Bioresour Technol 363:127986. https://doi.org/10.1016/j.biortech.2022.127986

    Article  CAS  PubMed  Google Scholar 

  21. Morales-Martínez JL, Aguilar-Uscanga MG, Bolaños-Reynoso E, López-Zamora L (2021) Optimization of chemical pretreatments using response surface methodology for second-generation ethanol production from coffee husk. Waste Bioenergy Res 14:815–827. https://doi.org/10.1007/s12155-020-10197-6

    Article  CAS  Google Scholar 

  22. Cerda A, Mejías L, Gea T, Sánchez A (2017) Cellulase and xylanase production at pilot scale by solid-state fermentation from coffee husk using specialized consortia: the consistency of the process and the microbial communities involved. Bioresour Technol 243:1059–1068. https://doi.org/10.1016/j.biortech.2017.07.076

    Article  CAS  PubMed  Google Scholar 

  23. Chin-Pampillo JS, Alfaro-Vargas A, Rojas R, Giacomelli CE, Perez-Villanueva M, Chinchilla-Soto C, Alcañiz JM, Domene X (2021) Widespread tropical agrowastes as novel feedstocks for biochar production: characterization and priority environmental uses. Biomass Convers Biorefinery 11:1775–1785. https://doi.org/10.1007/s13399-020-00714-0

    Article  CAS  Google Scholar 

  24. de Carvalho OF, Srinivas K, Helms GL, Isern NG, Cort JR, Gonçalves AR, Ahring BK (2018) Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresour Technol 257:172–180. https://doi.org/10.1016/j.biortech.2018.01.041

    Article  CAS  Google Scholar 

  25. Ferraz FO, Silva SS (2009) Characterization of coffee husk biomass for biotechnological purposes. New Biotechnol 25:S256. https://doi.org/10.1016/j.nbt.2009.06.573

    Article  Google Scholar 

  26. Gabriel T, Belete A, Syrowatka F, Neubert RHH, Gebre-Mariam T (2020) Extraction and characterization of celluloses from various plant byproducts. Int J Biol Macromol 158:1248–1258. https://doi.org/10.1016/j.ijbiomac.2020.04.264

    Article  CAS  Google Scholar 

  27. Gabriel T, Belete A, Hause G, Neubert RHH, Gebre-Mariam T (2021) Isolation and characterization of cellulose nanocrystals from different lignocellulosic residues: a comparative study. J Polym Environ 29:2964–2977. https://doi.org/10.1007/s10924-021-02089-3

    Article  CAS  Google Scholar 

  28. Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES (2009) Feasibility of ethanol production from coffee husks. Biotechnol Lett 31:1315–1319. https://doi.org/10.1007/s10529-009-0023-4

    Article  CAS  PubMed  Google Scholar 

  29. Navya PN, Pushpa SM (2013) Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk. Bioprocess Biosyst Eng 36:1115–1123. https://doi.org/10.1007/s00449-012-0865-3

    Article  CAS  PubMed  Google Scholar 

  30. Mankar AR, Pandey A, Modak A, Pant KK (2021) Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour Technol 334:125235. https://doi.org/10.1016/j.biortech.2021.125235

    Article  CAS  PubMed  Google Scholar 

  31. Mhlongo SI, den Haan R, Viljoen-Bloom M, van Zyl WH (2015) Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance. Enzym Microb Technol 81:16–22. https://doi.org/10.1016/j.enzmictec.2015.07.005

    Article  CAS  Google Scholar 

  32. de Almeida MN, Falkoski DL, Guimarães VM, HJO R, Visser EM, Maitan-Alfenas GP, De Rezende ST (2013) Characteristics of free endoglucanase and glycosidases multienzyme complex from Fusarium verticillioides. Bioresour Technol 143:413–422. https://doi.org/10.1016/j.biortech.2013.06.021

    Article  CAS  PubMed  Google Scholar 

  33. Rodrigues RS, Almeida MN, Maitan-Alfenas GP, Ventorim RZ, Sartori SR, Visser EM, Guimarães VM, Rezende ST (2021) Brachiaria brizantha grass as a feedstock for ethanol production. Braz Arch Biol Technol 64:1–13. https://doi.org/10.1590/1678-4324-2021200397

  34. Dadi D, Beyene A, Simoens K, Soares J, Demeke MM, Thevelein JM, Bernaerts K, Luis P, Van der Bruggen B (2018) Valorization of coffee byproducts for bioethanol production using lignocellulosic yeast fermentation and pervaporation. Int J Environ Sci Technol 15:821–832. https://doi.org/10.1007/s13762-017-1440-x

    Article  CAS  Google Scholar 

  35. Lima MA, Gomez LD, Steele-king CG, Simister R, Bernardinelli OD, Carvalho MA, Rezende CA, Labate CA, Eduardo R, Mcqueen-mason SJ, Polikarpov I (2014) Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production. Biotechnol Biofuels 7:1–19. https://doi.org/10.1186/1754-6834-7-10

    Article  CAS  Google Scholar 

  36. Dragone G, Moya EB, Syhler B, Orde J, Mussatto SI (2023) Enzymatic hydrolysis cocktail optimization for the intensification of sugar extraction from sugarcane bagasse. Int J Biol Macromol 242:1–10. https://doi.org/10.1016/j.ijbiomac.2023.125051

    Article  CAS  Google Scholar 

  37. Li X, Dilokpimol A, Kabel MA, de Vries RP (2022) Fungal xylanolytic enzymes: diversity and applications. Bioresour Technol 344:126290. https://doi.org/10.1016/j.biortech.2021.126290

    Article  CAS  PubMed  Google Scholar 

  38. de Souza CG, Viana Mendes I, de Morais SB, Chaves Barreto C, Assis Serra L, Ferreira Noronha E, Skorupa Parachin N, Moreira de Almeida JR, Ferraz Quirino B (2022) Identification and functional expression of a new xylose isomerase from the goat rumen microbiome in Saccharomyces cerevisiae. Lett Appl Microbiol 74:941–948. https://doi.org/10.1111/lam.13689

    Article  CAS  Google Scholar 

  39. Ili N (2023) Cellulases: from lignocellulosic biomass to improved production. Energies 16:1–21. https://doi.org/10.3390/en16083598

    Google Scholar 

  40. Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521. https://doi.org/10.1111/j.1574-6976.2008.00106.x

    Article  CAS  PubMed  Google Scholar 

  41. Srivastava N, Srivastava M, Mishra PK, Gupta VK, Molina G, Rodriguez-Couto S, Manikanta A, Ramteke PW (2018) Applications of fungal cellulases in biofuel production: advances and limitations. Renew Sust Energ Rev 82:2379–2386. https://doi.org/10.1016/j.rser.2017.08.074

    Article  CAS  Google Scholar 

  42. Wang M, Sheng Y, Cui H, Li A, Li X, Huang H (2022) The role of glycerol in preserving proteins needs to be reconsidered. ACS Sustain Chem Eng 34:15175–15185. https://doi.org/10.1021/acssuschemeng.2c04695

    Article  CAS  Google Scholar 

  43. Correia CJA, Silva JDS, Gonçalves LRB, Rocha MVP (2022) Different design configurations of simultaneous saccharification and fermentation to enhance ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide applying the biorefinery concept. Biomass Convers Biorefinery 12:2767–2780. https://doi.org/10.1007/s13399-020-00796-w

    Article  CAS  Google Scholar 

  44. Rodríguez MII, Moral S, Rodríguez JG, Pérez EF, Uscanga MGA (2023) Second-generation bioethanol production and cellulases of Aspergillus niger ITV02 using sugarcane bagasse as substrate. Bioenergy Res:1–13. https://doi.org/10.1007/s12155-023-10640-4

  45. Silva TP, Ferreira AN, Albuquerque FS (2022) Box–Behnken experimental design for the optimization of enzymatic saccharification of wheat bran. Biomass Convers Biorefinery 12:5597–5604. https://doi.org/10.1007/s13399-021-01378-0

    Article  CAS  Google Scholar 

  46. Sandri JP, Ordeñana J, Milessi TS, Zangirolami TC (2023) Environmental technology & innovation solid feeding and co-culture strategies for an efficient enzymatic hydrolysis and ethanol production from sugarcane bagasse. Environ Technol Innov 30:103082. https://doi.org/10.1016/j.eti.2023.103082

    Article  CAS  Google Scholar 

  47. Lin CA, Cheng C, Chen LW, Chen CW, Duan KJ (2023) Ethanol production using the whole solid-state fermented sugarcane bagasse cultivated by Trichoderma reesei RUT-C30 supplemented with commercial cellulase. Biocatal Agric Biotechnol 50:102667. https://doi.org/10.1016/j.bcab.2023.102667

    Article  CAS  Google Scholar 

  48. Ousmane A, Abreu A, Oliveira V, Pellegrini A, Diop B, Filgueiras JG, De AER, Polikarpov I (2023) Combined liquid hot water and sulfonation pretreatment of sugarcane bagasse to maximize fermentable sugars production. Ind Crop Prod 201:116849. https://doi.org/10.1016/j.indcrop.2023.116849

    Article  CAS  Google Scholar 

  49. Brondi MG, Elias AM, Furlan FF, Giordano RC, Farinas CS (2020) Performance targets defined by retro-techno-economic analysis for the use of soybean protein as saccharification additive in an integrated biorefinery. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-64316-6

    Article  CAS  Google Scholar 

  50. Fan M, Lei M, **e J, Zhang H (2022) Further insights into the solubilization and surface modification of lignin on enzymatic hydrolysis and ethanol production. Renew Energy 186:646–655. https://doi.org/10.1016/j.renene.2021.12.138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Laboratory of Electron Microscopy and Ultrastructural Analysis (LME), at the Federal University of Lavras, Lavras (UFLA), Minas Gerais State, Brazil.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais — Fapemig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maíra Nicolau de Almeida.

Ethics declarations

Ethics Approval

Ethics approval is not required for this research. The datasets generated during and/or analyzed during the current study are not publicly available due to lack of appropriate platform but are available from the corresponding author on reasonable request.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of Novelty: Coffee husks are an agro-industrial residue composed of fibrous material. Methodologies for converting it into simple sugars to enable the production of high-value products were studied.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, M.N., Halfeld, G.G., da Costa, I.B. et al. Exploring the Potential of Coffee Husks as a Raw Material for Second-Generation Ethanol Production. Bioenerg. Res. 17, 281–293 (2024). https://doi.org/10.1007/s12155-023-10655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10655-x

Keywords

Navigation