Log in

Evaluation of Organic Manure Preparation Strategies from Paddy Waste Using Bioaugmentation Approach

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Organic manure is prepared using various methods, but comparative efficiency is not reported yet. The present study aims to evaluate three methods viz. method developed by Narayan Deotao Pandharipande (NADEP), structured pit, and heap method for organic manure preparation from paddy waste. The bioaugmentation strategy was also used to enhance natural attenuation and shorten the period for manure preparation. Parameters like nitrogen, C:N ratio, degradation rates, cellulose and lignin content, and total bacterial and fungal count were monitored at 20 days intervals up to 120 days. The highest degradation 53.7% was observed in NADEP compared to other methods. Lower C:N ratio of 18.06 was reported in NADEP on 120 days. The lowest cellulose content 17.14% and lignin content 8.37% were found in NADEP on 120 days. In various methods, the half-life of cellulose was lower in the structured pit at 110 days and in bioaugmented methods at 113 days. The half-life of lignin was lower in the structure pit at 91 days and in bioaugmented methods at 96 days. Factorial completely randomized design (CRD) design revealed that NADEP was better than the structured pit and heap methods. Bioaugmented methods showed a significant difference in time reduction compared to control. Thus, among the three methods tested for organic manure preparation, NADEP showed promising results surpassing manure quality of the structured pit and heap method. Hence, farmers are advised to use the NADEP method to prepare good-quality organic manure in a short period using a bioaugmentation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Singh Y, Sidhu HS (2014) Management of cereal crop residues for sustainable rice-wheat production system in the Indo-gangetic plains of India. Proc Indian Natl Sci Acad 80:95–114. https://doi.org/10.16943/ptinsa/2014/v80i1/55089

    Article  CAS  Google Scholar 

  2. Koul B, Yakoob M, Shah MP (2022) Agricultural waste management strategies for environmental sustainability. Environ Res 206:112285. https://doi.org/10.1016/j.envres.2021.112285

    Article  CAS  PubMed  Google Scholar 

  3. Chang SH (2020) Rice Husk and Its pretreatments for bio-oil production via fast pyrolysis: a Review. Bioenerg Res 13:23–42. https://doi.org/10.1007/s12155-019-10059-w

    Article  Google Scholar 

  4. Statista (2022) https://www.statista.com/statistics/1140236/india-production-volume-of-rice/

  5. Gadde B, Bonnet S, Menke C, Garivait S (2000) Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ Poll 157:1554–1558. https://doi.org/10.1016/j.envpol.2009.01.004

    Article  CAS  Google Scholar 

  6. Mendoza TC, Mendoza BC (2016) A review of sustainability challenges of biomass for energy, focus in the Philippines. Agric Technol 12:281–310

    Google Scholar 

  7. Nguyen H, Jamali Moghadam M (2019) Moayedi H (2019) Agricultural wastes preparation, management, and applications in civil engineering: a review. J Mater Cycles Waste Manag 21:1039–1051. https://doi.org/10.1007/s10163-019-00872-y

    Article  CAS  Google Scholar 

  8. Bhuvaneshwari S, Hettiarachchi H, Meegoda JN (2019) Crop residue burning in India: policy challenges and potential solutions. Int J Environ Res Public Health 16:832. https://doi.org/10.3390/ijerph16050832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen F, Zhong B, Wang Y, **a X, Zhai Z, Zhang Q (2019) Cellulolytic microflora pretreatment increases the efficiency of anaerobic co-digestion of rice straw and pig manure. BioEnergy Research 12(24):703–713. https://doi.org/10.1007/s12155-019-10013-w

    Article  CAS  Google Scholar 

  10. Fodah AEM, Ghosal MK, Behera D (2021) Studies on microwave-assisted pyrolysis of rice straw using solar photovoltaic power. Bio Energ Res 14(1):190–208. https://doi.org/10.1007/s12155-020-10172-1

    Article  CAS  Google Scholar 

  11. Liu Q, Pan S, Zhou L et al (2022) Improving the biogas potential of rice straw through microwaveaAssisted ammoniation pretreatment during anaerobic digestion. Bioenerg Res 15:1240–1250. https://doi.org/10.1007/s12155-021-10299-9

    Article  CAS  Google Scholar 

  12. Liu Q, Pan S, Long Z, Li Z, Du L, Wei Y (2020) Assessment of fresh and dry rice straw for biogas potential by anaerobic digestion. BioEnerg Res 13(3):845–852. https://doi.org/10.1007/s12155-020-10106-x

    Article  CAS  Google Scholar 

  13. Pan S, Liu Q, Wen C, Li Z, Du L, Wei Y (2020) Producing biogas from rice straw: kinetic analysis and microbial community dynamics. Bio Energ Res:1–11. https://doi.org/10.1007/s12155-020-10226-4

  14. Chavan BL, Vedpathak MM, Pirgonde BR (2015) Management of agricultural solid waste through Vermicompost, NADEP compost and pit compost method. Int J Manag, IT Eng 5(5):211–216

    Google Scholar 

  15. Kumar A, Kumar V, Kumar A, Kumar M, Singh VS (2017) Study of different value added NADEP compost for replacing the chemical fertilizers. Annals of Horti 10(1):87–90. https://doi.org/10.5958/0976-4623.2017.00017.2

    Article  Google Scholar 

  16. Khandelwal V, Dohare D, Garg S (2019) Design and development of rapid composting pit for agricultural residues. Int J Engi Res Technol 8(9):629–635. https://doi.org/10.17577/IJERTV8IS090188

    Article  Google Scholar 

  17. Vyas T, Dave BP (2004) Biodegradation of crude oil by marine bacteria at Alang (Bhavnagar) sea coast. Proc Nat Acad Sci India 74, B(II): 153–160

  18. Vyas TK, Dave BP (2010) Effect of addition of nitrogen, phosphorus and potassium fertilizers on biodegradation of crude oil by marine bacteria. Ind J Mar Sci 39(1):143–150 (http://nopr.niscpr.res.in/handle/123456789/8558)

    CAS  Google Scholar 

  19. Eze MO, Thiel V, Hose GC et al (2022) Bacteria-plant interactions synergistically enhance biodegradation of diesel fuel hydrocarbons. Commun Earth Environ 3:192. https://doi.org/10.1038/s43247-022-00526-2

    Article  ADS  Google Scholar 

  20. Udume OA, Abu GO, Stanley HO, Vincent-Akpu IF, Momoh Y (2023) Eze MO (2023) Biostimulation of petroleum-contaminated soil using organic and inorganic amendments. Plants 12(3):431. https://doi.org/10.3390/plants12030431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  ADS  CAS  Google Scholar 

  22. Sahrawat KL, Pardhasaradhi G, Murthy KVS (1989) Evaluation of distilling the entire digest or an aliquot for total nitrogen determination in soil digests. Fertilizer Research 19:39–43. https://doi.org/10.1007/BF01080684

    Article  CAS  Google Scholar 

  23. FCO (1985) The Fertilizer (Control) Order. Government of India. https://companydemo.in/apps/nocf/uploads/pdf/FCOpdf-a34603742462f8064bc7b534fd433db2.pdf

  24. Sadasivam S, Manickam A (1992) Biochemical methods for agricultural sciences, Wiley Eastern Ltd, New Delhi, pp 13–14.

  25. TAPPI (2006) https://www.tappi.org/content/SARG/T222.pdf

  26. Vyas TK, Desai P, Patel AR, Patel KG (2017) Exploring effect of various organic manure on microbial community of soil from banana organic farm. Green Farming 8(1):156–159

    Google Scholar 

  27. Japan Institute of Energy (2002) Asian biomass handbook: a guide for biomass production and utilization. http://www.build-a-biogas-plant.com/PDF/AsianBiomassHandbook2008.pdf

  28. Shetty D, Joshi A, Dagar S, Kshirsagar P, Dhakephalkar P (2020) Bioaugmentation of anaerobic fungus Orpinomyces joyonii boosts sustainable biomethanation of rice straw without pretreatment. Biomass Bioenerg 138:105546. https://doi.org/10.1016/j.biombioe.2020.105546

    Article  CAS  Google Scholar 

  29. Sharma A, Sharma R, Arora A, Shah R, Singh A, Kumar P, Nain L (2014) Insights into rapid composting of paddy straw augmented with efficient microorganism consortium. Int J Recycl Org Waste Agricul 3:54. https://doi.org/10.1007/s40093-014-0054-2

    Article  Google Scholar 

  30. Zang X, Liu M, Fan Y, Xu J, Xu X, Li H (2018) The structural and functional contributions of β-glucosidase producing microbial communities to cellulose degradation in composting. Biotechnol Biofuels 11:51. https://doi.org/10.1186/s13068-018-1045-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahanta K, Jha DK, Rajkhowa DJ, Kumar M (2014) Isolation and evaluation of native cellulose degrading microorganisms for efficient bioconversion of weed biomass and rice straw. J Environ Biol 35:721–725. http://www.jeb.co.in/journal_issues/201407_jul14/paper_18.pdf

  32. Subramanium T, Pandurangan G, Ramasamy K, Anandham R, Paul D (2018) Exploration of rice husk compost as an alternate organic manure to enhance the productivity of blackgram in Typic Haplustalf and Typic Rhodustalf. J Environ Res Pub Health 15(2):358. https://doi.org/10.3390/ijerph15020358

    Article  CAS  Google Scholar 

  33. Naikwade P (2014) Waste management by composting and its effect on growth of Trigonella. J Aqu Biol Fish 2:476–483 (http://keralamarinelife.in/Journals/Vol2-2/74.pdf)

    Google Scholar 

  34. Devi Devi S, Sharma CR, Singh K (2012) Microbiological biodiversity in poultry and paddy straw waste in composting systems. Brazilian J Microbiol 43:288–296. https://doi.org/10.1590/S1517-838220120001000034

    Article  Google Scholar 

  35. Mozhiarasi V, Speier CJ, Rose PMB et al (2019) Variations in generation of vegetable, fruit and flower market waste and effects on biogas production, exergy and energy contents. J Mater Cycles Waste Manag 21:713–728. https://doi.org/10.1007/s10163-019-00828-2

    Article  Google Scholar 

  36. Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14(3):259–263. https://doi.org/10.1016/j.mib.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  37. Kausar H, Sariah M, Mohd HS, Zahangir AM, Razi IM (2010) Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. Int Biodet Biodeg 64:594–600. https://doi.org/10.1016/j.ibiod.2010.06.012

    Article  CAS  Google Scholar 

  38. Zhang Y, Zhou W (2014) On improved mechanistic modeling for enzymatic hydrolysis of cellulose. J Chem Eng Process Technol 5:190. https://doi.org/10.4172/2157-7048.1000190

    Article  Google Scholar 

  39. Glissmann K, Conrad R (2000) Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. FEMS Microbiol Ecol 31:117–126. https://doi.org/10.1111/j.1574-6941.2000.tb00677.x

    Article  CAS  PubMed  Google Scholar 

  40. Choudhary M, Sharma PC, Jat HS et al (2016) Crop residue degradation by fungi isolated from conservation agriculture fields under rice–wheat system of North-West India. Int J Recycl Org Waste Agricult 5:349–360. https://doi.org/10.1007/s40093-016-0145-3

    Article  Google Scholar 

  41. Crawford RL (1981) Lignin biodegradation and transformation. John Wiley & Sons, New York

    Google Scholar 

  42. Heal OW, Anderson JM, Swift MJ (1997) Plant litter quality and decomposition: an historical overview. In: Cadish G, Giller GE (eds) Driven by nature: Plant litter quality and decomposition. CABI Publishing, New York, pp 3–30

    Google Scholar 

  43. Johnson JMF, Barbour NW, Weyer SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71:155–162. https://doi.org/10.2136/sssaj2005.0419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Organic Farm, Navsari Agricultural University, Navsari for providing field facilities to conduct the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trupti K. Vyas.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, T.K., Patel, K.G., Desai, P. et al. Evaluation of Organic Manure Preparation Strategies from Paddy Waste Using Bioaugmentation Approach. Bioenerg. Res. 17, 96–106 (2024). https://doi.org/10.1007/s12155-023-10648-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10648-w

Keywords

Navigation