Log in

Investigation of Reaction Mechanism and the Effects of Process Parameters on Ionic Liquid–Based Delignification of Sugarcane Straw

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The delignification of sugarcane straw (SCS) was investigated using 1-ethyl-3-methylimidazolium acetate, [Emim][OAc], varying three process parameters such as temperature, residence time, and stirring rate. The maximum degree of delignification was around 63.9% at 90 °C for a stirring rate of 1400 rpm and a residence time of 5 h. The 23 full factorial statistical model was well-fitted with the experimental results. Among the 26 solid-liquid reaction mechanisms studied in this study, Zhuravlev, Lesokhin, and Templeman diffusion (i.e., shrinking core/product layer) model was found to be the most suitable model for describing the delignification mechanism of SCS using [Emim][OAc]. When compared with other process parameters, higher temperatures produced low crystalline and low thermally stable recovered cellulose-rich material with high porosity and BET surface area due to higher degree of crystalline cellulose I to amorphous cellulose II transformation. The recovered lignin was of low molecular structure with high content of phenolic OH groups and syringyl units. The recovery of [Emim][OAc] was > 85% with no structural changes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Khan AS, Man Z, Bustam MA, Kait CF, Ullah Z, Nasrullah A, Khan MI, Gonfa G, Ahmad P, Muhammad N (2016) Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass. J Mol Liq 223:754–762. https://doi.org/10.1016/j.molliq.2016.09.012

    Article  CAS  Google Scholar 

  2. Halder PK, Paul N, Beg MRA (2014) Assessment of biomass energy resources and related technologies practice in Bangladesh. Renew Sustain Energy Rev 39:444–460. https://doi.org/10.1016/j.rser.2014.07.071

    Article  Google Scholar 

  3. Oliveira FMV, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJM (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour Technol 130:168–173. https://doi.org/10.1016/j.biortech.2012.12.030

    Article  CAS  Google Scholar 

  4. Morais D, Carvalho D, Sevastyanova O et al (2015) Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Ind Crop Prod 73:118–126. https://doi.org/10.1016/j.indcrop.2015.04.021

    Article  CAS  Google Scholar 

  5. Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206. https://doi.org/10.1016/j.fuproc.2016.12.007

    Article  CAS  Google Scholar 

  6. Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Karim S, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745. https://doi.org/10.1016/j.energy.2017.01.005

    Article  CAS  Google Scholar 

  7. Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58:2915–2922. https://doi.org/10.1021/jf903616y

    Article  CAS  Google Scholar 

  8. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 787532:1–17. https://doi.org/10.4061/2011/787532

    Article  CAS  Google Scholar 

  9. Zhang Q, Hu J, Lee DJ (2017) Pretreatment of biomass using ionic liquids: research updates. Renew Energy 111:77–84. https://doi.org/10.1016/j.renene.2017.03.093

    Article  CAS  Google Scholar 

  10. Halder P, Kundu S, Patel S, Setiawan A, Atkin R, Parthasarthy R, Paz-Ferreiro J, Surapaneni A, Shah K (2019) Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renew Sustain Energy Rev 105:268–292. https://doi.org/10.1016/j.rser.2019.01.052

    Article  CAS  Google Scholar 

  11. **e W, Zhou D, Ren Y, Tang S, Kuang M, du SK (2018) 1-Butyl-3-methylimidazolium chloride pretreatment of cotton stalk and structure characterization. Renew Energy 125:668–674. https://doi.org/10.1016/j.renene.2018.03.011

    Article  CAS  Google Scholar 

  12. Prado R, Erdocia X, Labidi J (2016) Study of the influence of reutilization ionic liquid on lignin extraction. J Clean Prod 111:125–132. https://doi.org/10.1016/j.jclepro.2015.04.003

    Article  CAS  Google Scholar 

  13. Forsyth SA, Pringle JM, MacFarlane DR (2004) Ionic liquids—an overview. Aust J Chem 57:113. https://doi.org/10.1071/CH03231

    Article  CAS  Google Scholar 

  14. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655. https://doi.org/10.1039/b822702k

    Article  CAS  Google Scholar 

  15. Muhammad N, Man Z, Bustam MA, Mutalib MIA, Rafiq S (2013) Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J Ind Eng Chem 19:207–214. https://doi.org/10.1016/j.jiec.2012.08.003

    Article  CAS  Google Scholar 

  16. Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038. https://doi.org/10.1039/c1gc15522a

    Article  CAS  Google Scholar 

  17. Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267. https://doi.org/10.1016/j.bej.2016.01.021

    Article  CAS  Google Scholar 

  18. Halder P, Kundu S, Patel S, Ramezani M, Parthasarathy R, Shah K (2019) A comparison of ionic liquids and organic solvents on the separation of cellulose rich material from river red gum. Bioenergy Res 12:275–291. https://doi.org/10.1007/s12155-019-09967-8

    Article  CAS  Google Scholar 

  19. Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12:1967–1975. https://doi.org/10.1039/c0gc00206b

    Article  CAS  Google Scholar 

  20. Da Silva AS, Lee S, Endo T, Bon EPS (2011) Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]). Bioresour Technol 102:10505–10509. https://doi.org/10.1016/j.biortech.2011.08.085

    Article  CAS  Google Scholar 

  21. Shatalov AA, Pereira H (2005) Kinetics of organosolv delignification of fibre crop Arundo donax L. Ind Crops Prod 21:203–210. https://doi.org/10.1016/j.indcrop.2004.04.010

    Article  CAS  Google Scholar 

  22. Dong L, Zhao X, Liu D (2015) Kinetic modeling of atmospheric formic acid pretreatment of wheat straw with “ potential degree of reaction” models. RSC Adv 5:20992–21000. https://doi.org/10.1039/c4ra14634d

    Article  CAS  Google Scholar 

  23. Zhao X, Liu D (2013) Kinetic modeling and mechanisms of acid-catalyzed delignification of sugarcane bagasse by aqueous acetic acid. Bioenerg Res 6:436–447. https://doi.org/10.1007/s12155-012-9265-4

    Article  Google Scholar 

  24. Macfarlane AL, Farid MM, Chen JJJ (2009) Process intensification kinetics of delignification using a batch reactor with recycle. Chem Eng Process 48:864–870. https://doi.org/10.1016/j.cep.2008.11.005

    Article  CAS  Google Scholar 

  25. Halder P, Kundu S, Patel S, Parthasarathy R, Pramanik B, Paz-Ferreiro J, Shah K (2019) TGA-FTIR study on the slow pyrolysis of lignin and cellulose-rich fractions derived from imidazolium-based ionic liquid pre-treatment of sugarcane straw. Energy Convers Manag 200:112067. https://doi.org/10.1016/j.enconman.2019.112067

    Article  CAS  Google Scholar 

  26. Tan HT, Lee KT (2012) Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem Eng J 183:448–458. https://doi.org/10.1016/j.cej.2011.12.086

    Article  CAS  Google Scholar 

  27. Ayeni AO, Hymore FK, Mudliar SN, Deshmukh SC, Satpute DB, Omoleye JA, Pandey RA (2013) Hydrogen peroxide and lime based oxidative pretreatment of wood waste to enhance enzymatic hydrolysis for a biorefinery: process parameters optimization using response surface methodology. Fuel 106:187–194. https://doi.org/10.1016/j.fuel.2012.12.078

    Article  CAS  Google Scholar 

  28. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  29. Dickinson CF, Heal GR (1999) Solid-liquid diffusion controlled rate equations. Thermochim Acta 340–341:89–103. https://doi.org/10.1016/s0040-6031(99)00256-7

    Article  Google Scholar 

  30. Lal P, Kumar S, Upadhyay SN, Upadhya YD (1988) Solid-liquid mass transfer in agitated Newtonian and non-Newtonian fluids. Ind Eng Chem Res 27:1246–1259. https://doi.org/10.1021/ie00079a027

    Article  CAS  Google Scholar 

  31. Nasirpour N, Mousavi SM (2018) RSM based optimization of PEG assisted ionic liquid pretreatment of sugarcane bagasse for enhanced bioethanol production: effect of process parameters. Biomass and Bioenergy 116:89–98. https://doi.org/10.1016/j.biombioe.2018.06.008

    Article  CAS  Google Scholar 

  32. Zhuravlev VF, Lesokhin IG, Tempel’man RG (1948) Kinetics of the reactions for the formation of aluminates and the role of mineralizers in the process. J Appl Chem USSR 21:887–902

    CAS  Google Scholar 

  33. Ramachandran S, Baradarajan A, Satyanarayana M (1975) Kinetic studies of mixed powder compact system between zinc oxide and aluminium oxide. Mater Sci Eng 20:63–70

    Article  CAS  Google Scholar 

  34. Galvan D’Alessandro L, Kriaa K, Nikov I, Dimitrov K (2012) Ultrasound assisted extraction of polyphenols from black chokeberry. Sep Purif Technol 93:42–47. https://doi.org/10.1016/j.seppur.2012.03.024

    Article  CAS  Google Scholar 

  35. Li H-Y, Chen X, Wang C-Z, Sun SN, Sun RC (2016) Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of eucalyptus: chemical and anatomical changes. Biotechnol Biofuels 9:166. https://doi.org/10.1186/s13068-016-0578-y

    Article  CAS  Google Scholar 

  36. Sun N, Liu H, Sathitsuksanoh N, Stavila V, Sawant M, Bonito A, Tran K, George A, Sale KL, Singh S, Simmons BA, Holmes BM (2013) Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnol Biofuels 6:39. https://doi.org/10.1186/1754-6834-6-39

    Article  CAS  Google Scholar 

  37. Cheng G, Varanasi P, Arora R, Stavila V, Simmons BA, Kent MS, Singh S (2012) Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate. J Phys Chem B 116:10049–10054. https://doi.org/10.1021/jp304538v

    Article  CAS  Google Scholar 

  38. Raj T, Gaur R, Dixit P, Gupta RP, Kagdiyal V, Kumar R, Tuli DK (2016) Ionic liquid pretreatment of biomass for sugars production: driving factors with a plausible mechanism for higher enzymatic digestibility. Carbohydr Polym 149:369–381. https://doi.org/10.1016/j.carbpol.2016.04.129

    Article  CAS  Google Scholar 

  39. Uju SY, Nakamoto A et al (2012) Short time ionic liquids pretreatment on lignocellulosic biomass to enhance enzymatic saccharification. Bioresour Technol 103:446–452. https://doi.org/10.1016/j.biortech.2011.10.003

    Article  CAS  Google Scholar 

  40. Raj T, Gaur R, Lamba BY, Singh N, Gupta RP, Kumar R, Puri SK, Ramakumar SSV (2018) Characterization of ionic liquid pretreated plant cell wall for improved enzymatic digestibility. Bioresour Technol 249:139–145. https://doi.org/10.1016/j.biortech.2017.09.202

    Article  CAS  Google Scholar 

  41. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376. https://doi.org/10.1002/bit.22179

    Article  CAS  Google Scholar 

  42. Perez-Pimienta JA, Lopez-Ortega MG, Chavez-Carvayar JA, Varanasi P, Stavila V, Cheng G, Singh S, Simmons BA (2015) Characterization of agave bagasse as a function of ionic liquid pretreatment. Biomass and Bioenergy 75:180–188. https://doi.org/10.1016/j.biombioe.2015.02.026

    Article  CAS  Google Scholar 

  43. Li Z, Li W, Hu H et al (2014) Pretreatment of corn stover for sugar production by a two-step process using dilute hydrochloric acid followed by aqueous ammonia. Bioresources 9:4622–4635

    Google Scholar 

  44. Dougherty MJ, Tran HM, Stavila V, Knierim B, George A, Auer M, Adams PD, Hadi MZ (2014) Cellulosic biomass pretreatment and sugar yields as a function of biomass particle size. PLoS One 9:1–5. https://doi.org/10.1371/journal.pone.0100836

    Article  CAS  Google Scholar 

  45. Mohtar SS, Busu TNZTM, Noor AM et al (2015) Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecylhydrate precipitation processes. Bioresour Technol 192:212–218. https://doi.org/10.1016/j.biortech.2015.05.029

    Article  CAS  Google Scholar 

  46. Saha K, Dasgupta J, Chakraborty S, Antunes FAF, Sikder J, Curcio S, dos Santos JC, Arafat HA, da Silva SS (2017) Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose 24:3191–3207. https://doi.org/10.1007/s10570-017-1330-x

    Article  CAS  Google Scholar 

  47. Inkrod C, Raita M, Champreda V, Laosiripojana N (2018) Characteristics of lignin extracted from different lignocellulosic materials via organosolv fractionation. BioEnergy Res 11:277–290. https://doi.org/10.1007/s12155-018-9895-2

    Article  CAS  Google Scholar 

  48. Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy 57:1–16. https://doi.org/10.1016/j.biombioe.2013.07.015

    Article  CAS  Google Scholar 

  49. Wen J, Yuan T, Sun S et al (2014) Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chem 6:181–190. https://doi.org/10.1039/c3gc41752b

    Article  CAS  Google Scholar 

  50. Zhou S, Xue Y, Sharma A, Bai X (2016) Lignin valorization through thermochemical conversion: comparison of hardwood, softwood and herbaceous lignin. ACS Sustain Chem Eng 4:6608–6617. https://doi.org/10.1021/acssuschemeng.6b01488

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the School of Engineering, RMIT University, Melbourne, Australia. The first author is indebted to the School of Engineering, RMIT University, for his postgraduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpit Shah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 934 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, P., Kundu, S., Patel, S. et al. Investigation of Reaction Mechanism and the Effects of Process Parameters on Ionic Liquid–Based Delignification of Sugarcane Straw. Bioenerg. Res. 13, 1144–1158 (2020). https://doi.org/10.1007/s12155-020-10134-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10134-7

Keywords

Navigation