Log in

Dual-time-point dynamic 68Ga-PSMA-11 PET/CT for parametric imaging generation in prostate cancer

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

To investigate the optimal dual-time-point (DTP) approaches using dynamic 68Ga-PSMA-11 PET/CT imaging to generate parametric images for prostate cancer patients.

Methods

Fifteen patients with prostate cancer were intravenously administered 68Ga-PSMA-11 of 181.9 ± 47.2 MBq, followed by an immediate 60 min dynamic PET/CT scan. List-mode data were reconstructed into 25 timeframes (6 × 10 s, 8 × 30 s, and 11 × 300 s) and corrected for motion and partial volume effect. DTP parametric images were generated using different interval time points of 5 min and 10 min, with a minimum of 30 min time interval. Net influx rates (Ki) were calculated through the fitting of a single irreversible two-tissue compartmental model. Intraclass correlation coefficient (ICC) values between DTP protocols and 60 min Ki were obtained. Lesion-to-background ratios (LBRs) of Ki and standardized uptake value (SUV) images in each DTP protocol were determined.

Results

The DTP protocol of 5–10 min with a 40–45 min interval showed the highest ICC of 0.988 compared with the 60 min Ki, whereas the ICC values for the intervals of 0–5 min with 55–60 min and 0–10 min with 50–60 min were 0.941. The LBRs of the 60 min Ki, 5–10 min with 40–45 min Ki, 0–5 min with 55–60 min Ki, 0–10 min with 50–60 min Ki, SUVmean, and SUVmax images were 29.53 ± 27.33, 13.05 ± 15.28, 45.15 ± 53.11, 45.52 ± 70.31, 19.77 ± 23.43, and 25.06 ± 30.07, respectively.

Conclusion

The 0–5 min with 55–60 min DTP parametric imaging exhibits a comparable Ki to 60 min parametric imaging and remarkable image quality and contrast than SUV imaging, enhancing prostate cancer diagnosis while maintaining time efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  2. Johansson JE, Holmberg L, Johansson S, Bergström R, Adami HO. Fifteen year survival in prostate cancer a prospective population-based study in Sweden. JAMA. 1997;277:467–71.

    Article  CAS  PubMed  Google Scholar 

  3. Pesapane F, Czarniecki M, Suter MB, Turkbey B, Villeirs G. Imaging of distant metastases of prostate cancer. Med Oncol. 2018;35:148.

    Article  PubMed  Google Scholar 

  4. Shou J, Zhang Q, Wang S, Zhang D. The prognosis of different distant metastases pattern in prostate cancer: a population based retrospective study. Prostate. 2018;78:491–7.

    Article  CAS  PubMed  Google Scholar 

  5. Haberkorn U, Eder M, Kopka K, Babich JW, Eisenhut M. New strategies in prostate cancer: prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy. Clin Cancer Res. 2016;22:9–15.

    Article  CAS  PubMed  Google Scholar 

  6. Chatachot K, Shiratori S, Chaiwatanarat T, Khamwan K. Patient dosimetry of 177Lu-PSMA I&T in metastatic prostate cancer treatment: the experience in Thailand. Ann Nucl Med. 2021;35:1193–202.

    Article  CAS  PubMed  Google Scholar 

  7. Grubmüller B, Baltzer P, D’Andrea D, Korn S, Haug AR, Hacker M, et al. 68Ga-PSMA 11 ligand PET imaging in patients with biochemical recurrence after radical prostatectomy - diagnostic performance and impact on therapeutic decision-making. Eur J Nucl Med Mol Imaging. 2018;45:235–42.

    Article  PubMed  Google Scholar 

  8. Sonni I, Eiber M, Fendler WP, Alano RM, Vangala SS, Kishan AU, et al. Impact of 68Ga-PSMA-11 PET/CT on staging and management of prostate cancer patients in various clinical settings: a prospective single-center study. J Nucl Med. 2020;61:1153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hope TA, Aggarwal R, Chee B, Tao D, Greene KL, Cooperberg MR, et al. Impact of 68Ga-PSMA-11 PET on management in patients with biochemically recurrent prostate cancer. J Nucl Med. 2017;58:1956–61.

    Article  CAS  PubMed  Google Scholar 

  10. Fendler WP, Ferdinandus J, Czernin J, Eiber M, Flavell RR, Behr SC, et al. Impact of 68Ga-PSMA-11 PET on the management of recurrent prostate cancer in a prospective single-arm clinical trial. J Nucl Med. 2020;61:1793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferraro DA, Garcia Schüler HI, Muehlematter UJ, Eberli D, Müller J, Müller A, et al. Impact of 68Ga-PSMA-11 PET staging on clinical decision-making in patients with intermediate or high-risk prostate cancer. Eur J Nucl Med Mol Imaging. 2020;47:652–64.

    Article  CAS  PubMed  Google Scholar 

  12. Khamwan K, Chamnan P, Thinka Y, Shiratori S. Determination of patient doses and biokinetic of 68Ga-PSMA-11 PET/CT imaging in metastases prostate cancer patients. J Med Imaging Radiat Sci. 2022;53:S62.

    Google Scholar 

  13. Bertoldo A, Rizzo G, Veronese M. Deriving physiological information from PET images: from SUV to compartmental modelling. Clin Transl Imaging. 2014;2:239–51.

    Article  Google Scholar 

  14. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50:11s–20s.

    Article  CAS  PubMed  Google Scholar 

  15. Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imaging. 2021;48:21–39.

    Article  PubMed  Google Scholar 

  16. Ringheim A, Campos Neto GC, Anazodo U, Cui L, da Cunha ML, Vitor T, et al. Kinetic modeling of 68Ga-PSMA-11 and validation of simplified methods for quantification in primary prostate cancer patients. EJNMMI Res. 2020;10:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang G, Rahmim A, Gunn RN. PET parametric imaging: past, present, and future. IEEE Trans Radiat Plasma Med Sci. 2020;4:663–75.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sachpekidis C, Pan L, Hadaschik BA, Kopka K, Haberkorn U, Dimitrakopoulou-Strauss A. 68Ga-PSMA-11 PET/CT in prostate cancer local recurrence: impact of early images and parametric analysis. Am J Nucl Med Mol Imaging. 2018;8:351–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu J, Liu H, Ye Q, Gallezot JD, Naganawa M, Miao T, et al. Generation of parametric Ki images for FDG PET using two 5-min scans. Med Phys. 2021;48:5219–31.

    Article  CAS  PubMed  Google Scholar 

  20. Khamwan K, Sukprakun C, Limotai C, Jirasakuldej S, Jantarato A, Hemachudha T, et al. Dynamic 18F-FDG-PET kinetic parameters for epileptogenic zone localization in drug-resistant epilepsy. Front Phys. 2023;11:1233059.

    Article  Google Scholar 

  21. Tang Y, Liow J-S, Zhang Z, Li J, Long T, Li Y, et al. The evaluation of dynamic FDG-PET for detecting epileptic foci and analyzing reduced glucose phosphorylation in refractory epilepsy. Front Neurosci. 2019;12:993.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Croteau E, Lavallée E, Labbe SM, Hubert L, Pifferi F, Rousseau JA, et al. Image-derived input function in dynamic human PET/CT: methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain. Eur J Nucl Med Mol Imaging. 2010;37:1539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Volpi T, Maccioni L, Colpo M, Debiasi G, Capotosti A, Ciceri T, et al. An update on the use of image-derived input functions for human PET studies: new hopes or old illusions? EJNMMI Res. 2023;13:97.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Christiaan S, Carl KH, Johan N, Marc S, Christine W, Sung-Cheng H, et al. 1–11C-acetate kinetics of prostate cancer. J Nucl Med. 2008;49:206–15.

    Article  Google Scholar 

  25. Driscoll B, Shek T, Vines D, Sun A, Jaffray D, Yeung I. Phantom validation of a conservation of activity-based partial volume correction method for arterial input function in dynamic PET imaging. Tomography. 2022;8:842–57.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11.

    CAS  PubMed  Google Scholar 

  27. Rousset OG, Collins DL, Rahmim A, Wong DF. Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J Nucl Med. 2008;49:1097–106.

    Article  PubMed  Google Scholar 

  28. Hong YT, Fryer TD. Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: general principle and application to [18F]fluorodeoxyglucose positron emission tomography. Neuroimage. 2010;51:164–72.

    Article  PubMed  Google Scholar 

  29. Sokoloff L, Reivich M, Kennedy C, Rosiers MHD, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.

    Article  CAS  PubMed  Google Scholar 

  30. Chen R, Ng YL, Zhao H, Ge Q, Shi F, Cao K, et al. Quantitative parametric imaging added diagnostic values in lesion detection of 68Ga-PSMA-11 in prostate cancer patients identified by dynamic total-body PET/CT. J Nucl Med. 2022;63(supplement 2):2584.

    Google Scholar 

  31. Sachpekidis C, Kopka K, Eder M, Hadaschik BA, Freitag MT, Pan L, et al. 68Ga-PSMA-11 dynamic PET/CT imaging in primary prostate cancer. Clin Nucl Med. 2016;41:e473–9.

    Article  PubMed  Google Scholar 

  32. Strauss DS, Sachpekidis C, Kopka K, Pan L, Haberkorn U, Dimitrakopoulou-Strauss A. Pharmacokinetic studies of [68 Ga]Ga-PSMA-11 in patients with biochemical recurrence of prostate cancer: detection, differences in temporal distribution and kinetic modelling by tissue type. Eur J Nucl Med Mol Imaging. 2021;48:4472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kidera D, Kihara K, Akamatsu G, Mikasa S, Taniguchi T, Tsutsui Y, et al. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity. Ann Nucl Med. 2016;30:97–103.

    Article  CAS  PubMed  Google Scholar 

  34. Ilan E, Sandström M, Velikyan I, Sundin A, Eriksson B, Lubberink M. Parametric net influx rate images of 68Ga-DOTATOC and 68Ga-DOTATATE: quantitative accuracy and improved image contrast. J Nucl Med. 2017;58:744–9.

    Article  CAS  PubMed  Google Scholar 

  35. Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. 68Ga-PSMA PET/CT Joint EANM and SNMMI procedure guideline for prostate cancer imaging version 1.0. Eur J Nucl Med Mol Imaging. 2017;44(6):1014–24.

    Article  PubMed  Google Scholar 

  36. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, et al. The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med. 2002;43:510–8.

    PubMed  Google Scholar 

  37. Gallezot J-D, Lu Y, Naganawa M, Carson RE. Parametric imaging with PET and SPECT. IEEE Trans Radiat Plasma Med Sci. 2020;4:1–23.

    Article  Google Scholar 

  38. Zuo Y, Qi J, Wang G. Relative patlak plot for dynamic PET parametric imaging without the need for early-time input function. Phys Med Biol. 2018;63:165004.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate the invaluable guidance and support provided by the nuclear medicine physicians, medical physicists, radiological technologists, and the dedicated team at the Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital. Further, the authors would like to thank Prof. Dr. Guobao Wang from UC Davis for his valuable suggestion is this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitiwat Khamwan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burasothikul, P., Navikhacheevin, C., Pasawang, P. et al. Dual-time-point dynamic 68Ga-PSMA-11 PET/CT for parametric imaging generation in prostate cancer. Ann Nucl Med (2024). https://doi.org/10.1007/s12149-024-01939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12149-024-01939-z

Keywords

Navigation