Log in

Akkermania muciniphila: a rising star in tumor immunology

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Tumor is accompanied by complex and dynamic microenvironment development, and the interaction of all its components influences disease progression and response to treatment. Once the tumor microenvironment has been eradicated, various mechanisms can induce the tumors. Microorganisms can maintain the homeostasis of the tumor microenvironment through immune regulation, thereby inhibiting tumor development. Akkermania muciniphila (A. muciniphila), an anaerobic bacterium, can induce tumor immunity, regulate the gastrointestinal microenvironment through metabolites, outer membrane proteins, and some cytokines, and enhance the curative effect through combined immunization. Therefore, a comprehensive understanding of the complex interaction between A. muciniphila and human immunity will facilitate the development of immunotherapeutic strategies in the future and enable patients to obtain a more stable clinical response. This article reviews the most recent developments in the tumor immunity of A. muciniphila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

A. muciniphila :

Akkermania muciniphila

AmEVs:

A. muciniphila-Derived EVs

CDDP:

Cisplatin

CAR:

Chimeric antigen receptor

CAR-T immunotherapy:

Chimeric antigen receptor T-cell immunotherapy

CE:

Cranberry extract

CRC:

Colorectal Cancer

CTLs:

Cytotoxic T lymphocytes

CXCR6:

CXC–chemokine receptor 6

CXCL16:

CXC–chemokine ligand 16

CTLA-4:

Cytotoxic T lymphocyte antigen 4

DCs:

Dendritic cells

FAS:

Factor-associated suicide

FMT:

Fecal microbiota transplantation

GPCR41:

G protein-coupled receptors 41

GPCR43:

G protein-coupled receptors 43

GPCR109A:

G protein-coupled receptors 109A

GLP-1:

Glucagon-like peptide-1

H3K14ac:

Lys14 on histone H3

HSP70:

Heat shock protein 70

HDAc:

Histone deacetylation

HCC:

Hepatocellular carcinoma

IgA:

Immunoglobulin A

IgG1:

Immunoglobulin G1

IL-1β:

Interleukin 1β

IL-2:

Interleukin 2

IL-6:

Interleukin 6

IL-8:

Interleukin 8

IL-10:

Interleukin 10

IL-12:

Interleukin 12

IL-18:

Interleukin 18

IFN-γ:

Interferon gamma

ICIs:

Immune checkpoint inhibitors

LAG-3:

Lymphocyte activating gene 3

M1-Like TAMs:

M1-like macrophages

Muc3:

Mucin3

Muc2:

Mucin2

MDSCs:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility complex molecules

NO:

Nitric oxide

NLRP3:

Thermal protein domain associated protein 3

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Non-alcoholic hepatitis

PYY:

Peptide YY

p53:

Protein 53

PPARγ:

Peroxisome proliferator-activated receptor gamma

PBMCs:

Peripheral blood mononuclear cells

PD-1:

Programmed death receptor 1

PD-L1:

Programmed death ligand 1

SERT:

Serotonin reuptake transporter

SCFAs:

Short-chain fatty acids

TNF-α:

Tumor necrosis factor-α

Treg cells:

Regulatory T cells

TLR2:

Toll-like receptor 2

Th1:

T helper 1

TGF-β:

Transforming growth factor-β

TME:

Tumor Microenvironment

TFH cells:

T follicular helper cells

TJPs:

Tight junction proteins

TRAIL:

Tumor-necrosis-factor-related apoptosis-inducing ligand

ZO-1:

Zonula Occludens-1

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Kuo CL, Chou HY, Chiu YC, Cheng AN, Fan CC, Chang YN, et al. Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett. 2020;474:138–50.

    Article  CAS  PubMed  Google Scholar 

  3. Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, et al. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer. 2019;18(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med. 2019;25(4):656–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wong TL, Ng KY, Tan KV, Chan LH, Zhou L, Che N, et al. CRAF methylation by prmt6 regulates aerobic glycolysis-driven hepatocarcinogenesis via erk-dependent pkm2 nuclear relocalization and activation. Hepatology. 2020;71(4):1279–96.

    Article  CAS  PubMed  Google Scholar 

  6. Boulch M, Grandjean CL, Cazaux M, Bousso P. Tumor immunosurveillance and immunotherapies: a fresh look from intravital imaging. Trends Immunol. 2019;40(11):1022–34.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang X, Wang J, Deng X, **ong F, Ge J, **ang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tang S, Qin C, Hu H, Liu T, He Y, Guo H, et al. Immune checkpoint inhibitors in non-small cell lung cancer: progress, challenges, and prospects. Cells. 2022;11(3):320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49.

    Article  CAS  PubMed  Google Scholar 

  10. Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol. 2022;13: 925985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huuhtanen J, Kasanen H, Peltola K, Lönnberg T, Glumoff V, Brück O, et al. Single-cell characterization of anti-LAG-3 and anti-PD-1 combination treatment in patients with melanoma. J Clin Invest. 2023. https://doi.org/10.1172/JCI164809.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zettl M, Wurm M, Schaaf O, Mostböck S, Tirapu I, Apfler I, et al. Combination of two novel blocking antibodies, anti-PD-1 antibody ezabenlimab (BI 754091) and anti-LAG-3 antibody BI 754111, leads to increased immune cell responses. Oncoimmunology. 2022;11(1):2080328.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.

    Article  CAS  PubMed  Google Scholar 

  15. Becken B, Davey L, Middleton DR, Mueller KD, Sharma A, Holmes ZC et al: Genotypic and Phenotypic Diversity among Human Isolates of Akkermansia muciniphila. mBio 2021, doI: https://doi.org/10.1128/mBio.00478-21

  16. Kobyliak N, Falalyeyeva T, Kyriachenko Y, Tseyslyer Y, Kovalchuk O, Hadiliia O, et al. Akkermansia muciniphila as a novel powerful bacterial player in the treatment of metabolic disorders. Minerva Endocrinol (Torino). 2022;47(2):242–52.

    PubMed  Google Scholar 

  17. Kim JS, Kang SW, Lee JH, Park SH, Lee JS. The evolution and competitive strategies of akkermansia muciniphila in gut. Gut Microbes. 2022;14(1):2025017.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang T, Li Q, Cheng L, Buch H, Zhang F. Akkermansia muciniphila is a promising probiotic. Microb Biotechnol. 2019;12(6):1109–25.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Q, Yu J, Hao Y, Zhou H, Hu Y, Zhang C, et al. akkermansia muciniphila plays critical roles in host health. Crit Rev Microbiol. 2022;49(1):82–100.

    Article  PubMed  Google Scholar 

  21. Pietrzak B, Tomela K, Olejnik-Schmidt A, Mackiewicz A, Schmidt M. Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int J Mol Sci. 2020;21(23):9254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ansaldo E, Slayden LC, Ching KL, Koch MA, Wolf NK, Plichta DR, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364(6446):1179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015;39(3):424–9.

    Article  CAS  PubMed  Google Scholar 

  24. Cani PD, Knauf C. A newly identified protein from akkermansia muciniphila stimulates GLP-1 secretion. Cell Metab. 2021;33(6):1073–5.

    Article  CAS  PubMed  Google Scholar 

  25. Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci. 2012;57(12):3126–35.

    Article  CAS  PubMed  Google Scholar 

  26. Gaudier E, Jarry A, Blottière HM, de Coppet P, Buisine MP, Aubert JP, et al. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol. 2004;287(6):G1168-1174.

    Article  CAS  PubMed  Google Scholar 

  27. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020–32.

    Article  PubMed  Google Scholar 

  28. Zhang WH, Jiang Y, Zhu QF, Gao F, Dai SF, Chen J, et al. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br Poult Sci. 2011;52(3):292–301.

    Article  CAS  PubMed  Google Scholar 

  29. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734.

    Article  CAS  PubMed  Google Scholar 

  31. Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V, Klievink J, et al. Pili-like proteins of akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE. 2017;12(3): e0173004.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Xu W, Wang R, Cheng R, Tang Z, Zhang M. The outer membrane protein Amuc_1100 of akkermansia muciniphila promotes intestinal 5-HT biosynthesis and extracellular availability through TLR2 signalling. Food Funct. 2021;12(8):3597–610.

    Article  PubMed  Google Scholar 

  33. Zheng X, Huang W, Li Q, Chen Y, Wu L, Dong Y, et al. Membrane protein amuc_1100 derived from akkermansia muciniphila facilitates lipolysis and browning via activating the ac3/pka/hsl pathway. Microbiol Spectr. 2023;11(2): e0432322.

    Article  PubMed  Google Scholar 

  34. König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, et al. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 2016;7(10): e196.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shin J, Noh JR, Chang DH, Kim YH, Kim MH, Lee ES, et al. Elucidation of akkermansia muciniphila probiotic traits driven by mucin depletion. Front Microbiol. 2019;10:1137.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen T, Wang R, Duan Z, Yuan X, Ding Y, Feng Z, et al. Akkermansia muciniphila protects against psychological disorder-induced gut microbiota-mediated colonic mucosal barrier damage and aggravation of colitis. Front Cell Infect Microbiol. 2021;11: 723856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahmadi Badi S, Moshiri A, Fateh A, Rahimi Jamnani F, Sarshar M, Vaziri F, et al. Microbiota-derived extracellular vesicles as new systemic regulators. Front Microbiol. 2017;8:1610.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fábrega MJ, Aguilera L, Giménez R, Varela E, Alexandra Cañas M, Antolín M, et al. Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic escherichia coli strains. Front Microbiol. 2016;7:705.

    PubMed  PubMed Central  Google Scholar 

  39. Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50(2): e450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DK, et al. Extracellular vesicles derived from gut microbiota, especially akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE. 2013;8(10): e76520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, et al. Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes. 2005;54(12):3358–70.

    Article  CAS  PubMed  Google Scholar 

  44. **itore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  45. Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E, et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord. 2018;33(1):88–98.

    Article  CAS  PubMed  Google Scholar 

  46. Hou Y, Li X, Liu C, Zhang M, Zhang X, Ge S, et al. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson’s disease. Exp Gerontol. 2021;150: 111376.

    Article  CAS  PubMed  Google Scholar 

  47. Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018;173(7):1728-1741.e1713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bárcena C, Valdés-Mas R, Mayoral P, Garabaya C, Durand S, Rodríguez F, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25(8):1234–42.

    Article  PubMed  Google Scholar 

  49. Blacher E, Bashiardes S, Shapiro H, Rothschild D, Mor U, Dori-Bachash M, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature. 2019;572(7770):474–80.

    Article  CAS  PubMed  Google Scholar 

  50. Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C, Huhtinen H, et al. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol. 2015;81(11):3655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lungulescu CV, Răileanu S, Afrem G, Ungureanu BS, Florescu DN, Gheonea IA, et al. Histochemical and immunohistochemical study of mucinous rectal carcinoma. J Med Life. 2017;10(2):139–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mall AS, Chirwa N, Govender D, Lotz Z, Tyler M, Rodrigues J, et al. MUC2, MUC5AC and MUC5B in the mucus of a patient with pseudomyxoma peritonei: biochemical and immunohistochemical study. Pathol Int. 2007;57(8):537–47.

    Article  CAS  PubMed  Google Scholar 

  53. Meng X, Wang W, Lan T, Yang W, Yu D, Fang X, et al. A purified aspartic protease from akkermansia muciniphila plays an important role in degrading muc2. Int J Mol Sci. 2019;21(1):72.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gupta S. Molecular signaling in death receptor and mitochondrial pathways of apoptosis (review). Int J Oncol. 2003;22(1):15–20.

    CAS  PubMed  Google Scholar 

  55. Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7(12):a006080.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jiang Y, Xu Y, Zheng C, Ye L, Jiang P, Malik S, et al. Acetyltransferase from akkermansia muciniphila blunts colorectal tumourigenesis by reprogramming tumour microenvironment. Gut. 2023;72(7):1308–18.

    Article  CAS  PubMed  Google Scholar 

  57. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.

    Article  PubMed  Google Scholar 

  58. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34(3):274–85.

    Article  CAS  PubMed  Google Scholar 

  59. Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM, et al. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biol. 2018;15:467–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li T, Lin X, Shen B, Zhang W, Liu Y, Liu H, et al. Akkermansia muciniphila suppressing nonalcoholic steatohepatitis associated tumorigenesis through CXCR6(+) natural killer T cells. Front Immunol. 2022;13:1047570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qu S, Fan L, Qi Y, Xu C, Hu Y, Chen S, et al. Akkermansia muciniphila alleviates dextran sulfate sodium (dss)-induced acute colitis by nlrp3 activation. Microbiol Spectr. 2021;9(2): e0073021.

    Article  PubMed  Google Scholar 

  62. Fan L, Xu C, Ge Q, Lin Y, Wong CC, Qi Y, et al. A muciniphila suppresses colorectal tumorigenesis by inducing tlr2/nlrp3-mediated m1-like tams. Cancer Immunol Res. 2021;9(10):1111–24.

    Article  CAS  PubMed  Google Scholar 

  63. Yao X, Zhang C, **ng Y, Xue G, Zhang Q, Pan F, et al. Remodelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis. Nat Commun. 2017;8(1):1896.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44(6):1255–69.

    Article  CAS  PubMed  Google Scholar 

  65. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to pd-1 inhibition. N Engl J Med. 2017;377(25):2500–1.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zitvogel L, Galluzzi L, Viaud S, Vétizou M, Daillère R, Merad M, et al. Cancer and the gut microbiota: an unexpected link. Sci Transl Med. 2015;7(271):271271.

    Article  Google Scholar 

  67. Berman D, Parker SM, Siegel J, Chasalow SD, Weber J, Galbraith S, et al. Blockade of cytotoxic T-lymphocyte antigen-4 by ipilimumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. Cancer Immun. 2010;10:11.

    PubMed  PubMed Central  Google Scholar 

  68. Yang H, Yao Z, Zhou X, Zhang W, Zhang X, Zhang F. Immune-related adverse events of checkpoint inhibitors: insights into immunological dysregulation. Clin Immunol. 2020;213: 108377.

    Article  CAS  PubMed  Google Scholar 

  69. Liang X, Ye X, Wang C, **ng C, Miao Q, **e Z, et al. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J Control Release. 2019;296:150–61.

    Article  CAS  PubMed  Google Scholar 

  70. Rimassa L, Finn RS, Sangro B. Combination immunotherapy for hepatocellular carcinoma. J Hepatol. 2023;79(2):506–15.

    Article  CAS  PubMed  Google Scholar 

  71. Bentebibel SE, Hurwitz ME, Bernatchez C, Haymaker C, Hudgens CW, Kluger HM, et al. A first-in-human study and biomarker analysis of nktr-214, a novel il2rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 2019;9(6):711–21.

    Article  CAS  PubMed  Google Scholar 

  72. Grenier JM, Yeung ST, Khanna KM. Combination immunotherapy: taking cancer vaccines to the next level. Front Immunol. 2018;9:610.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bonmassar E, Testorelli C, Franco P, Goldin A, Cudkowicz G. Changes of the immunogenic properties of a radiation-induced mouse lymphoma following treatment with antitumor drugs. Cancer Res. 1975;35(8):1957–62.

    CAS  PubMed  Google Scholar 

  74. Park SD, Kim CH, Kim CK, Park JA, Sohn HJ, Hong YK, et al. Cross-priming by temozolomide enhances antitumor immunity of dendritic cell vaccination in murine brain tumor model. Vaccine. 2007;25(17):3485–91.

    Article  CAS  PubMed  Google Scholar 

  75. Berd D. Low doses of chemotherapy to inhibit suppressor T cells. Prog Clin Biol Res. 1989;288:449–58.

    CAS  PubMed  Google Scholar 

  76. Pietras RJ, Fendly BM, Chazin VR, Pegram MD, Howell SB, Slamon DJ. Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene. 1994;9(7):1829–38.

    CAS  PubMed  Google Scholar 

  77. Hancock MC, Langton BC, Chan T, Toy P, Monahan JJ, Mischak RP, et al. A monoclonal antibody against the c-erbB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res. 1991;51(17):4575–80.

    CAS  PubMed  Google Scholar 

  78. Derosa L, Routy B, Thomas AM, Iebba V, Zalcman G, Friard S, et al. Intestinal akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat Med. 2022;28(2):315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lu X. Impact of IL-12 in Cancer. Curr Cancer Drug Targets. 2017;17(8):682–97.

    Article  CAS  PubMed  Google Scholar 

  81. Chen C, Lim D, Cai Z, Zhang F, Liu G, Dong C, et al. HDAC inhibitor HPTA initiates anti-tumor response by CXCL9/10-recruited CXCR3(+)CD4(+)T cells against PAHs carcinogenicity. Food Chem Toxicol. 2023;176: 113783.

    Article  CAS  PubMed  Google Scholar 

  82. Chen ZF, Xu Q, Ding JB, Zhang Y, Du R, Ding Y. CD4+CD25+Foxp3+ Treg and TGF-beta play important roles in pathogenesis of Uygur cervical carcinoma. Eur J Gynaecol Oncol. 2012;33(5):502–7.

    CAS  PubMed  Google Scholar 

  83. Chen Z, Qian X, Chen S, Fu X, Ma G, Zhang A. Akkermansia muciniphila enhances the antitumor effect of cisplatin in lewis lung cancer mice. J Immunol Res. 2020;2020:2969287.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shi L, Sheng J, Chen G, Zhu P, Shi C, Li B, et al. Combining IL-2-based immunotherapy with commensal probiotics produces enhanced antitumor immune response and tumor clearance. J Immunother Cancer. 2020;8(2):e000973.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Stein-Thoeringer CK, Saini NY, Zamir E, Blumenberg V, Schubert ML, Mor U, et al. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. Nat Med. 2023;29(4):906–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Juárez-Fernández M, Porras D, Petrov P, Román-Sagüillo S, García-Mediavilla MV, Soluyanova P, et al. The synbiotic combination of akkermansia muciniphila and quercetin ameliorates early obesity and nafld through gut microbiota resha** and bile acid metabolism modulation. Antioxidants (Basel). 2021;10(12):2001.

    Article  PubMed  Google Scholar 

  87. Newsome RC, Gharaibeh RZ, Pierce CM, da Silva WV, Paul S, Hogue SR, et al. Interaction of bacterial genera associated with therapeutic response to immune checkpoint PD-1 blockade in a United States cohort. Genome Med. 2022;14(1):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang Z, Shi X, Ji J, Guo Y, Peng Q, Hao L, et al. Dihydroartemisinin increased the abundance of akkermansia muciniphila by YAP1 depression that sensitizes hepatocellular carcinoma to anti-PD-1 immunotherapy. Front Med. 2023;17(4):729–46.

    Article  PubMed  Google Scholar 

  89. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased akkermansia spp population in the gut microbiota of mice. Gut. 2015;64(6):872–83.

    Article  PubMed  Google Scholar 

  90. Anhê FF, Nachbar RT, Varin TV, Vilela V, Dudonné S, Pilon G, et al. A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss. Mol Metab. 2017;6(12):1563–73.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Alard J, Lehrter V, Rhimi M, Mangin I, Peucelle V, Abraham AL, et al. Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environ Microbiol. 2016;18(5):1484–97.

    Article  CAS  PubMed  Google Scholar 

  92. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. An increase in the akkermansia spp population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The figures were created by BioRender (Biorender.Com).

We thank Home for Researchers editorial team (www.home-for-researchers.com) for language editing service.

Funding

This work was supported by grants from the Graduate Research-Innovation Project in Jiangsu province (SJCX22_1816), the Graduate Research and Practice Innovation Plan of Graduate Education Innovation Project in Jiangsu Province (No. SJCX211644), Social development project of key R & D plan of Jiangsu Provincial Department of science and technology (BE2022773), and Hospital level management project of Subei People's Hospital YYGL202228, the Social Development-Health Care Project of Yangzhou, Jiangsu Province (No. YZ2021075).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work. The work reported in the paper has been performed by the authors, unless clearly specified in the text.

Corresponding author

Correspondence to Dong Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Tang, D. Akkermania muciniphila: a rising star in tumor immunology. Clin Transl Oncol (2024). https://doi.org/10.1007/s12094-024-03493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12094-024-03493-6

Keywords

Navigation