Log in

PILE: a candidate prognostic score in cancer patients treated with immunotherapy

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Although the immune checkpoint inhibitors (ICIs) became a vital part of cancer care, many patients do not respond to treatment, indicating need for biomarkers. The Pan-Immune-Inflammation Value (PIV) is a recently developed peripheral blood count-based biomarker. Herein, we evaluated a PIV-based candidate scoring system as a prognostic biomarker in ICI-treated patients.

Methods

A total of 120 advanced cancer patients treated with anti-PD-1 or anti-PD-L1 inhibitors for any cancer type were included in this study. The PILE scoring system incorporating the PIV (< median vs. ≥ median), lactate dehydrogenase levels (normal vs. > normal) and Eastern Cooperative Oncology Group performance status (0 vs. ≥ 1) was constructed from the multivariate analyses and used for stratification. The association between overall survival (OS), progression-free survival and PILE risk category was evaluated with multivariate analysis.

Results

The median follow-up was 9.62 months and the median OS of all cohort were 12.42 ± 2.75 months. Patients with higher PIV had significantly decreased OS (7.75 ± 1.64 vs. 18.63 ± 4.26 months, p = 0.037). The patients in the PILE high-risk group (PILE score 2–3) had decreased OS (18.63 ± 4.02 vs. 5.09 ± 1.23 months, HR: 2.317, 95% CI: 1.450–3.700, p < 0.001) and PFS (7.69 ± 1.30 vs. 2.69 ± 0.65 months, HR: 1.931, 95% CI: 1.263–2.954, p = 0.002) compared to PILE low-risk group (PILE score 0–1). The Harrell C-Index values were 0.65 and 0.61 for OS and PFS prediction, respectively.

Conclusion

In this study, we demonstrated a decreased overall survival in ICI-treated patients with a higher PILE score. If prospective studies validate our results, PILE score could be a biomarker for immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, et al. Advances in cancer immunotherapy 2019–latest trends. J Exp Clin Cancer Res. 2019;38:268. https://doi.org/10.1186/s13046-019-1266-0.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. New Engl J Med. 2015;373:1803–13. https://doi.org/10.1056/NEJMoa1510665.

    Article  CAS  PubMed  Google Scholar 

  3. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. New Engl J Med. 2019;381:1535–46. https://doi.org/10.1056/NEJMoa1910836.

    Article  CAS  PubMed  Google Scholar 

  4. Mok TSK, Wu Y-L, Kudaba I, Kowalski DM, Cho BC, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393:1819–30. https://doi.org/10.1016/S0140-6736(18)32409-7.

    Article  CAS  PubMed  Google Scholar 

  5. Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. New Engl J Med. 2016;375:1856–67. https://doi.org/10.1056/NEJMoa1602252.

    Article  CAS  PubMed  Google Scholar 

  6. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, et al. PD-1 blockade with nivolumab in relapsed or refractory hodgkin’s lymphoma. New Engl J Med. 2014;372:311–9. https://doi.org/10.1056/NEJMoa1411087.

    Article  CAS  PubMed  Google Scholar 

  7. Galsky MD, Arija JÁA, Bamias A, Davis ID, De Santis M, et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395:1547–57. https://doi.org/10.1016/S0140-6736(20)30230-0.

    Article  CAS  PubMed  Google Scholar 

  8. Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50:1–11. https://doi.org/10.1038/s12276-018-0191-1.

    Article  CAS  PubMed  Google Scholar 

  9. Ribas A. Releasing the brakes on cancer immunotherapy. New Engl J Med. 2015;373:1490–2. https://doi.org/10.1056/NEJMp1510079.

    Article  PubMed  Google Scholar 

  10. Gnjatic S, Bronte V, Brunet LR, Butler MO, Disis ML, et al. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J ImmunoTherapy Cancer. 2017;5:44. https://doi.org/10.1186/s40425-017-0243-4.

    Article  Google Scholar 

  11. Guven DC, Sahin TK, Dizdar O, Kilickap S (2020) Predictive biomarkers for immunotherapy efficacy in non-small-cell lung cancer: current status and future perspectives. Biomarkers Med 14:1383–1392. https://doi.org/10.2217/bmm-2020-0310

  12. Hofman P, Heeke S, Alix-Panabières C, Pantel K. Liquid biopsy in the era of immuno-oncology: is it ready for prime-time use for cancer patients? Ann Oncol. 2019;30:1448–59. https://doi.org/10.1093/annonc/mdz196.

    Article  CAS  PubMed  Google Scholar 

  13. Nixon AB, Schalper KA, Jacobs I, Potluri S, Wang IM, et al. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential? J Immunotherapy Cancer. 2019;7:325. https://doi.org/10.1186/s40425-019-0799-2.

    Article  Google Scholar 

  14. Weide B, Martens A, Hassel JC, Berking C, Postow MA, et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res. 2016;22:5487–96. https://doi.org/10.1158/1078-0432.Ccr-16-0127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanizaki J, Haratani K, Hayashi H, Chiba Y, Nakamura Y, et al. Peripheral blood biomarkers associated with clinical outcome in non-small cell lung cancer patients treated with nivolumab. J Thorac Oncol. 2018;13:97–105. https://doi.org/10.1016/j.jtho.2017.10.030.

    Article  CAS  PubMed  Google Scholar 

  16. Fucà G, Guarini V, Antoniotti C, Morano F, Moretto R, et al. The pan-immune-inflammation value is a new prognostic biomarker in metastatic colorectal cancer: results from a pooled-analysis of the Valentino and TRIBE first-line trials. Br J Cancer. 2020;123:403–9. https://doi.org/10.1038/s41416-020-0894-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dumitru CA, Lang S, Brandau S. Modulation of neutrophil granulocytes in the tumor microenvironment: mechanisms and consequences for tumor progression. Semin Cancer Biol. 2013;23:141–8. https://doi.org/10.1016/j.semcancer.2013.02.005.

    Article  CAS  PubMed  Google Scholar 

  18. Deryugina EI, Zajac E, Juncker-Jensen A, Kupriyanova TA, Welter L, et al. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia. 2014;16:771–88. https://doi.org/10.1016/j.neo.2014.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11:123–34. https://doi.org/10.1038/nrc3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riesenberg BP, Ansa-Addo EA, Gutierrez J, Timmers CD, Liu B, et al. Cutting edge: targeting thrombocytes to rewire anticancer immunity in the tumor microenvironment and potentiate efficacy of PD-1 blockade. J Immunol. 2019;203:1105–10. https://doi.org/10.4049/jimmunol.1900594.

    Article  CAS  PubMed  Google Scholar 

  21. Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, et al. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res. 2020;39:89. https://doi.org/10.1186/s13046-020-01586-y.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jeong J, Suh Y, Jung K. Context drives diversification of monocytes and neutrophils in orchestrating the tumor microenvironment. Front Immunol. 2019;10:1817–1817. https://doi.org/10.3389/fimmu.2019.01817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Viñal D, Gutierrez-Sainz L, Martinez D, Garcia-Cuesta JA, Pedregosa J, et al. Prognostic value of neutrophil-to-lymphocyte ratio in advanced cancer patients receiving immunotherapy. Clin Transl Oncol. 2020. https://doi.org/10.1007/s12094-020-02509-1.

    Article  PubMed  Google Scholar 

  24. Bilen MA, Martini DJ, Liu Y, Shabto JM, Brown JT, et al. Combined effect of sarcopenia and systemic inflammation on survival in patients with advanced stage cancer treated with immunotherapy. Oncologist. 2020;25:e528–35. https://doi.org/10.1634/theoncologist.2019-0751.

    Article  CAS  PubMed  Google Scholar 

  25. Bigot F, Castanon E, Baldini C, Hollebecque A, Carmona A, et al. Prospective validation of a prognostic score for patients in immunotherapy phase I trials: the Gustave Roussy Immune Score (GRIm-Score). Eur J Cancer. 2017;84:212–8. https://doi.org/10.1016/j.ejca.2017.07.027.

    Article  CAS  PubMed  Google Scholar 

  26. Prelaj A, Ferrara R, Rebuzzi SE, Proto C, Signorelli D et al (2019) EPSILoN: a prognostic score for immunotherapy in advanced non-small-cell lung cancer: a validation cohort. Cancers (Basel) 11. https://doi.org/10.3390/cancers11121954

  27. Sen S, Hess K, Hong DS, Naing A, Piha-Paul S, et al. Development of a prognostic scoring system for patients with advanced cancer enrolled in immune checkpoint inhibitor phase 1 clinical trials. Br J Cancer. 2018;118:763–9. https://doi.org/10.1038/bjc.2017.480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maymani H, Hess K, Groisberg R, Hong DS, Naing A, et al. Predicting outcomes in patients with advanced non-small cell lung cancer enrolled in early phase immunotherapy trials. Lung Cancer. 2018;120:137–41. https://doi.org/10.1016/j.lungcan.2018.03.020.

    Article  PubMed  Google Scholar 

  29. Garrido-Laguna I, Janku F, Vaklavas C, Falchook GS, Fu S, et al. Validation of the Royal Marsden Hospital prognostic score in patients treated in the Phase I Clinical Trials Program at the MD Anderson Cancer Center. Cancer. 2012;118:1422–8. https://doi.org/10.1002/cncr.26413.

    Article  PubMed  Google Scholar 

  30. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 2018;4:351–7. https://doi.org/10.1001/jamaoncol.2017.4771.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Song P, Yang D, Cui X, Wang H, Si X et al (2020) NLCIPS: non-small cell lung cancer immunotherapy prognosis score. Cancer Manage Res 12:5975–5985. https://doi.org/10.2147/CMAR.S257967

  32. Park W, Kwon D, Saravia D, Desai A, Vargas F, et al. Develo** a predictive model for clinical outcomes of advanced non-small cell lung cancer patients treated with nivolumab. Clin Lung Cancer. 2018;19(280–288):e284. https://doi.org/10.1016/j.cllc.2017.12.007.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received no financial support for this article.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the ethics committee of Hacettepe University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Guven.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethical approval

Due to the retrospective nature of the study, informed consent is not required for the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guven, D.C., Yildirim, H.C., Bilgin, E. et al. PILE: a candidate prognostic score in cancer patients treated with immunotherapy. Clin Transl Oncol 23, 1630–1636 (2021). https://doi.org/10.1007/s12094-021-02560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02560-6

Keywords

Navigation