Log in

10 ns PEFs induce a histological response linked to cell death and cytotoxic T-lymphocytes in an immunocompetent mouse model of peritoneal metastasis

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The application of nanosecond pulsed electric fields (nsPEFs) could be an effective therapeutic strategy for peritoneal metastasis (PM) from colorectal cancer (CRC). The aim of this study was to evaluate in vitro the sensitivity of CT-26 CRC cells to nsPEFs in combination with chemotherapeutic agents, and to observe the subsequent in vivo histologic response.

Methods

In vitro cellular assays were performed to assess the effects of exposure to 1, 10, 100, 500 and 1000 10 ns pulses in a cuvette or bi-electrode system at 10 and 200 Hz. nsPEF treatment was applied alone or in combination with oxaliplatin and mitomycin. Cell death was detected by flow cytometry, and permeabilization and intracellular calcium levels by fluorescent confocal microscopy after treatment. A mouse model of PM was used to investigate the effects of in vivo exposure to pulses delivered using a bi-electrode system; morphological changes in mitochondria were assessed by electron microscopy. Fibrosis was measured by multiphoton microscopy, while the histological response (HR; hematoxylin–eosin–safran stain), proliferation (KI67, DAPI), and expression of immunological factors (CD3, CD4, CD8) were evaluated by classic histology.

Results

10 ns PEFs exerted a dose-dependent effect on CT-26 cells in vitro and in vivo, by inducing cell death and altering mitochondrial morphology after plasma membrane permeabilization. In vivo results indicated a specific CD8+ T cell immune response, together with a strong HR according to the Peritoneal Regression Grading Score (PRGS).

Conclusions

The effects of nsPEFs on CT-26 were confirmed in a mouse model of CRC with PM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

nsPEFs:

Nanosecond pulsed electric fields

PM:

Peritoneal metastasis

CRC:

Colorectal cancer

HES:

Hematoxylin and eosin stain

HIPEC:

Hyperthermic intraperitoneal chemotherapy

CT:

Control

ns:

Non-significant

PIPAC:

Pressurized Intraperitoneal Aerosol Chemotherapy

PRGS:

Peritoneal Regression Grading Score

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–403. https://doi.org/10.1016/j.ejca.2012.12.027.

    Article  CAS  PubMed  Google Scholar 

  2. Surveillance, Epidemiology, and End Results Program. Cancer stat facts: colon and rectum cancer National Cancer Institute. 2020 http://seer.cancer.gov/statfacts/html/colorect.html.

  3. Franko J, Shi Q, Meyers JP, Maughan TS, Adams RA, Seymour MT, Saltz L, Punt CJA, Koopman M, Tournigand C, Tebbutt NC, Diaz-Rubio E, Souglakos J, et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 2016;17:1709–19. https://doi.org/10.1016/S1470-2045(16)30500-9.

    Article  PubMed  Google Scholar 

  4. Phelip JM, Tougeron D, Léonard D, Benhaim L, Desolneux G, Dupré A, Michel P, Penna C, Tournigand C, Louvet C, Christou N, Chevallier P, Dohan A, et al. Metastatic colorectal cancer (mCRC): French intergroup clinical practice guidelines for diagnosis, treatments and follow-up (SNFGE, FFCD, GERCOR, UNICANCER, SFCD, SFED, SFRO, SFR). Dig Liver Dis. 2019;51:1357–63. https://doi.org/10.1016/j.dld.2019.05.035.

    Article  PubMed  Google Scholar 

  5. Pinto A, Pocard M. Hyperthermic intraperitoneal chemotherapy with cisplatin and mitomycin C for colorectal cancer peritoneal metastases: a systematic review of the literature. Pleura Peritoneum. 2019;4:20190006. https://doi.org/10.1515/pp-2019-0006.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Elias D, El Otmany A, Bonnay M, Paci A, Ducreux M, Antoun S, Lasser P, Laurent S, Bourget P. Human pharmacokinetic study of heated intraperitoneal oxaliplatin in increasingly hypotonic solutions after complete resection of peritoneal carcinomatosis. Oncology. 2002;63:346–52. https://doi.org/10.1159/000066229.

    Article  CAS  PubMed  Google Scholar 

  7. Elias D, Pocard M, Sideris L, Edè C, Ducreux M, Boige V, Lasser P. Preliminary results of intraperitoneal chemohyperthermia with oxaliplatin in peritoneal carcinomatosis of colorectal origin. Br J Surg. 2004;91:455–6. https://doi.org/10.1002/bjs.4399.

    Article  CAS  PubMed  Google Scholar 

  8. Elias D, Gilly F, Boutitie F, Quenet F, Bereder J-M, Mansvelt B, Lorimier G, Dubè P, Glehen O. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J Clin Oncol. 2010;28:63–8. https://doi.org/10.1200/JCO.2009.23.9285.

    Article  PubMed  Google Scholar 

  9. Glehen O, Gilly FN, Boutitie F, Bereder JM, Quenet F, Sideris L, Mansvelt B, Lorimier G, Msika S, Elias D, French Surgical Association. Toward curative treatment of peritoneal carcinomatosis from nonovarian origin by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy: a multi-institutional study of 1,290 patients. Cancer. 2010;116:5608–18. https://doi.org/10.1002/cncr.25356.

    Article  PubMed  Google Scholar 

  10. Goéré D, Malka D, Tzanis D, Gava V, Boige V, Eveno C, Maggiori L, Dumont F, Ducreux M, Elias D. Is there a possibility of a cure in patients with colorectal peritoneal carcinomatosis amenable to complete cytoreductive surgery and intraperitoneal chemotherapy? Ann Surg. 2013;257:1065–71. https://doi.org/10.1097/SLA.0b013e31827e9289.

    Article  PubMed  Google Scholar 

  11. Miklavčič D, Mir LM, Thomas VP. Electroporation-based technologies and treatments. J Membrane Biol. 2010;236:1–2. https://doi.org/10.1007/s00232-010-9287-9.

    Article  CAS  Google Scholar 

  12. Mir LM. Electroporation-based gene therapy: recent evolution in the mechanism description and technology developments. Methods Mol Biol. 2014;1121:3–23. https://doi.org/10.1007/978-1-4614-9632-8_1.

    Article  CAS  PubMed  Google Scholar 

  13. Davalos RV, Mir ILM, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005;33:223–31. https://doi.org/10.1007/s10439-005-8981-8.

    Article  CAS  PubMed  Google Scholar 

  14. Bardet SM, Carr L, Soueid M, Arnaud-Cormos D, Leveque P, O’Connor RP. Multiphoton imaging reveals that nanosecond pulsed electric fields collapse tumor and normal vascular perfusion in human glioblastoma xenografts. Sci Rep. 2016;6:34443. https://doi.org/10.1038/srep34443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miao X, Yin S, Shao Z, Zhang Y, Chen X. Nanosecond pulsed electric field inhibits proliferation and induces apoptosis in human osteosarcoma. J Orthop Surg Res. 2015;10:104. https://doi.org/10.1186/s13018-015-0247-z.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cui G, Diao H. Research advances of anti-tumor immune response induced by pulse electric field ablation. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2015;44:672–7.

    CAS  PubMed  Google Scholar 

  17. Rossi A, Pakhomova ON, Mollica PA, Casciola M, Mangalanathan U, Pakhomov AG, Muratori C. Nanosecond pulsed electric fields induce endoplasmic reticulum stress accompanied by immunogenic cell death in murine models of lymphoma and colorectal cancer. Cancers. 2019. https://doi.org/10.3390/cancers11122034.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen X, James Swanson R, Kolb JF, Nuccitelli R, Schoenbach KH. Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment. Melanoma Res. 2009;19:361–71. https://doi.org/10.1097/CMR.0b013e32832f1558.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Kolb JF, Swanson RJ, Schoenbach KH, Beebe SJ. Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields. Pigment Cell Melanoma Res. 2010;23:554–63. https://doi.org/10.1111/j.1755-148X.2010.00704.x.

    Article  CAS  PubMed  Google Scholar 

  20. Neumann E, Sowers AE, Jordan CA. Electroporation and electrofusion in cell biology. New York: Plenum Press; 1989.

    Book  Google Scholar 

  21. Teissié A, Eynard A, Gabriel A, Rols A. Electropermeabilization of cell membranes. Adv Drug Deliv Rev. 1999;35:3–19. https://doi.org/10.1016/s0169-409x(98)00060-x.

    Article  PubMed  Google Scholar 

  22. Breton M, Mir LM. Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics. 2012;33:106–23. https://doi.org/10.1002/bem.20692.

    Article  PubMed  Google Scholar 

  23. Pakhomov AG, Miklavcic D, Markov MS, editors. Advanced electroporation techniques in biology in medicine. Boca Raton: CRC Press; 2010.

    Google Scholar 

  24. Zimmermann U, Friedrich U, Mussauer H, Gessner P, Hämel K, Sukhorukov V. Electromanipulation of mammalian cells: fundamentals and application. IEEE Trans Plasma Sci. 2000;28(1):72–822000.

    Article  CAS  Google Scholar 

  25. Tarek M. Membrane electroporation: a molecular dynamics simulation. Biophys J. 2005;88:4045–53. https://doi.org/10.1529/biophysj.104.050617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC. Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun. 2006;341:1266–76. https://doi.org/10.1016/j.bbrc.2006.01.094.

    Article  CAS  PubMed  Google Scholar 

  27. Delemotte L, Tarek M. Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol. 2012;245:531–43. https://doi.org/10.1007/s00232-012-9434-6.

    Article  CAS  PubMed  Google Scholar 

  28. Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane electroporation and electropermeabilization: mechanisms and models. Annu Rev Biophys. 2019;48:63–91. https://doi.org/10.1146/annurev-biophys-052118-115451.

    Article  CAS  PubMed  Google Scholar 

  29. Cui C, Merritt R, Fu L, Pan Z. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B. 2017;7:3–17. https://doi.org/10.1016/j.apsb.2016.11.001.

    Article  PubMed  Google Scholar 

  30. Carr L, Bardet SM, Arnaud-Cormos D, Leveque P, O’Connor RP. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells. Bioelectrochemistry. 2018;119:68–75. https://doi.org/10.1016/j.bioelechem.2017.09.003.

    Article  CAS  PubMed  Google Scholar 

  31. White JA, Blackmore PF, Schoenbach KH, Beebe SJ. Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem. 2004;279:22964–72. https://doi.org/10.1074/jbc.M311135200.

    Article  CAS  PubMed  Google Scholar 

  32. Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA. Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun. 2003;310:286–95. https://doi.org/10.1016/j.bbrc.2003.08.140.

    Article  CAS  PubMed  Google Scholar 

  33. Semenov I, **ao S, Pakhomov AG. Primary pathways of intracellular Ca(2+) mobilization by nanosecond pulsed electric field. Biochim Biophys Acta. 2013;1828:981–9. https://doi.org/10.1016/j.bbamem.2012.11.032.

    Article  CAS  PubMed  Google Scholar 

  34. Beebe SJ, Sain NM, Ren W. Induction of cell death mechanisms and apoptosis by nanosecond pulsed electric fields (nsPEFs). Cells. 2013;2:136–62. https://doi.org/10.3390/cells2010136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nuccitelli R, McDaniel A, Connolly R, Zelickson B, Hartman H. Nano-pulse stimulation induces changes in the intracellular organelles in rat liver tumors treated in situ. Lasers Surg Med. 2020;52(9):882–9. https://doi.org/10.1002/lsm.23239.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ren Z, Chen X, Cui G, Yin S, Chen L, Jiang J, Hu Z, **e H, Zheng S, Zhou L. Nanosecond pulsed electric field inhibits cancer growth followed by alteration in expressions of NF-κB and Wnt/β-catenin signaling molecules. PLoS ONE. 2013;8:e74322. https://doi.org/10.1371/journal.pone.0074322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rossi A, Pakhomova ON, Pakhomov AG, Weygandt S, Bulysheva AA, Murray LE, Mollica PA, Muratori C. Mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Sci Rep. 2019;9:431. https://doi.org/10.1038/s41598-018-36527-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu X, Chen Y, Zhang R, Miao X, Chen X. Activation of anti-tumor Immune response by ablation of HCC with nanosecond pulsed electric field. J Clin Transl Hepatol. 2018;6:85–8. https://doi.org/10.14218/JCTH.2017.00042.

    Article  PubMed  Google Scholar 

  39. Chen R, Sain NM, Harlow KT, Chen Y-J, Shires PK, Heller R, Beebe SJ. A protective effect after clearance of orthotopic rat hepatocellular carcinoma by nanosecond pulsed electric fields. Eur J Cancer. 2014;50:2705–13. https://doi.org/10.1016/j.ejca.2014.07.006.

    Article  PubMed  Google Scholar 

  40. Nuccitelli R, Berridge JC, Mallon Z, Kreis M, Athos B, Nuccitelli P. Nanoelectroablation of murine tumors triggers a CD8-dependent inhibition of secondary tumor growth. PLoS ONE. 2015;10:e0134364. https://doi.org/10.1371/journal.pone.0134364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nuccitelli R, Tran K, Lui K, Huynh J, Athos B, Kreis M, Nuccitelli P, De Fabo EC. Non-thermal nanoelectroablation of UV-induced murine melanomas stimulates an immune response. Pigment Cell Melanoma Res. 2012;25:618–29. https://doi.org/10.1111/j.1755-148X.2012.01027.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Soueid M, Kohler S, Carr L, Bardet SM, O’Connor RP, Leveque P, Arnaud-Cormos P. Electromagnetic analysis of an aperture modified TEM cell including an ITO layer for real-time observation of biological cells exposed to microwaves. Progr Electromagn Res. 2014;149:193–204.

    Article  Google Scholar 

  43. Kenaan M, El Amari S, Silve A, Merla C, Mir LM, Couderc V, Arnaud-Cormos D, Leveque P. Characterization of a 50- Ω exposure setup for high-voltage nanosecond pulsed electric field bioexperiments. IEEE Trans Biomed Eng. 2011;58:207–14. https://doi.org/10.1109/TBME.2010.2081670.

    Article  PubMed  Google Scholar 

  44. Wu Y-H, Arnaud-Cormos D, Casciola M, Sanders JM, Leveque P, Vernier PT. Moveable wire electrode microchamber for nanosecond pulsed electric-field delivery. IEEE Trans Biomed Eng. 2013;60:489–96. https://doi.org/10.1109/TBME.2012.2228650.

    Article  PubMed  Google Scholar 

  45. Taibi A, Albouys J, Jacques J, Perrin M-L, Yardin C, Durand Fontanier S, Bardet SM. Comparison of implantation sites for the development of peritoneal metastasis in a colorectal cancer mouse model using non-invasive bioluminescence imaging. PLoS ONE. 2019;14:e0220360. https://doi.org/10.1371/journal.pone.0220360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Solass W, Sempoux C, Detlefsen S, Carr NJ, Bibeau F. Peritoneal sampling and histological assessment of therapeutic response in peritoneal metastasis: proposal of the Peritoneal Regression Grading Score (PRGS). Pleura and Peritoneum. 2016;1(2):99–107. https://doi.org/10.1515/pp-2016-0011.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yin S, Chen X, Hu C, Zhang X, Hu Z, Yu J, Feng X, Jiang K, Ye S, Shen K, **e H, Zhou L, James Swanson R, et al. Nanosecond pulsed electric field (nsPEF) treatment for hepatocellular carcinoma: a novel locoregional ablation decreasing lung metastasis. Cancer Lett. 2014;346:285–91. https://doi.org/10.1016/j.canlet.2014.01.009.

    Article  CAS  PubMed  Google Scholar 

  48. Chen X, Yin S, Hu C, Chen X, Jiang K, Ye S, Feng X, Fan S, **e H, Zhou L, Zheng S. Comparative study of nanosecond electric fields in vitro and in vivo on hepatocellular carcinoma indicate macrophage infiltration contribute to tumor ablation in vivo. PLoS ONE. 2014;9:e86421. https://doi.org/10.1371/journal.pone.0086421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, Kitamura H, Nishimura T. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res. 2010;70:2697–706. https://doi.org/10.1158/0008-5472.CAN-09-2982.

    Article  CAS  PubMed  Google Scholar 

  50. Abboud K, André T, Brunel M, Ducreux M, Eveno C, Glehen O, Goéré D, Gornet J-M, Lefevre JH, Mariani P, Pinto A, Quenet F, Sgarbura O, et al. Management of colorectal peritoneal metastases: expert opinion. J Visc Surg. 2019;156:377–9. https://doi.org/10.1016/j.jviscsurg.2019.08.002.

    Article  CAS  PubMed  Google Scholar 

  51. Alyami M, Hübner M, Grass F, Bakrin N, Villeneuve L, Laplace N, Passot G, Glehen O, Kepenekian V. Pressurised intraperitoneal aerosol chemotherapy: rationale, evidence, and potential indications. Lancet Oncol. 2019;20:e368–77. https://doi.org/10.1016/S1470-2045(19)30318-3.

    Article  PubMed  Google Scholar 

  52. Hristov K, Mangalanathan U, Casciola M, Pakhomova ON, Pakhomov AG. Expression of voltage-gated calcium channels augments cell susceptibility to membrane disruption by nanosecond pulsed electric field. Biochim Biophys Acta Biomembr. 2018;1860:2175–83. https://doi.org/10.1016/j.bbamem.2018.08.017.

    Article  CAS  PubMed  Google Scholar 

  53. Nesin OM, Pakhomova ON, **ao S, Pakhomov AG. Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses. Biochim Biophys Acta. 2011;1808:792–801. https://doi.org/10.1016/j.bbamem.2010.12.012.

    Article  CAS  PubMed  Google Scholar 

  54. Pakhomov AG, Kolb JF, White JA, Joshi RP, **ao S, Schoenbach KH. Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics. 2007;28:655–63. https://doi.org/10.1002/bem.20354.

    Article  CAS  PubMed  Google Scholar 

  55. Bowman AM, Nesin OM, Pakhomova ON, Pakhomov AG. Analysis of plasma membrane integrity by fluorescent detection of Tl(+) uptake. J Membr Biol. 2010;236:15–26. https://doi.org/10.1007/s00232-010-9269-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Creighton TE. Proteins: structures and molecular properties. New York: W.H. Freeman; 1993.

    Google Scholar 

  57. Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, Ren W, Osgood C, Swanson RJ, Kolb JF, Beebe SJ, Schoenbach KH. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer. 2009;125:438–45. https://doi.org/10.1002/ijc.24345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, Schoenbach KH. Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol. 2003;22:785–96. https://doi.org/10.1089/104454903322624993.

    Article  CAS  PubMed  Google Scholar 

  59. Beebe SJ, Fox PM, Rec LJ, Willis ELK, Schoenbach KH. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J. 2003;17:1493–5. https://doi.org/10.1096/fj.02-0859fje.

    Article  CAS  PubMed  Google Scholar 

  60. Ford WE, Ren W, Blackmore PF, Schoenbach KH, Beebe SJ. Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma. Arch Biochem Biophys. 2010;497:82–9. https://doi.org/10.1016/j.abb.2010.03.008.

    Article  CAS  PubMed  Google Scholar 

  61. Hall EH, Schoenbach KH, Beebe SJ. Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells. Apoptosis. 2007;12:1721–31. https://doi.org/10.1007/s10495-007-0083-7.

    Article  CAS  PubMed  Google Scholar 

  62. Vincelette RL, Roth CC, McConnell MP, Payne JA, Beier HT, Ibey BL. Thresholds for phosphatidylserine externalization in Chinese hamster ovarian cells following exposure to nanosecond pulsed electrical fields (nsPEF). PLoS ONE. 2013;8:e63122. https://doi.org/10.1371/journal.pone.0063122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Muratori C, Pakhomov AG, Gianulis E, Meads J, Casciola M, Mollica PA, Pakhomova ON. Activation of the phospholipid scramblase TMEM16F by nanosecond pulsed electric fields (nsPEF) facilitates its diverse cytophysiological effects. J Biol Chem. 2017;292:19381–91. https://doi.org/10.1074/jbc.M117.803049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pakhomova ON, Gregory BW, Semenov I, Pakhomov AG. Two modes of cell death caused by exposure to nanosecond pulsed electric field. PLoS ONE. 2013;8:e70278. https://doi.org/10.1371/journal.pone.0070278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mir LM, Orlowski S, Belehradek J, Paoletti C. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer. 1991;27:68–72.

    Article  CAS  Google Scholar 

  66. García-Sánchez T, Leray I, Ronchetti M, Cadossi R, Mir LM. Impact of the number of electric pulses on cell electrochemotherapy in vitro: limits of linearity and saturation. Bioelectrochemistry. 2019;129:218–27. https://doi.org/10.1016/j.bioelechem.2019.05.021.

    Article  CAS  PubMed  Google Scholar 

  67. Wu S, Guo J, Wei W, Zhang J, Fang J, Beebe SJ. Enhanced breast cancer therapy with nsPEFs and low concentrations of gemcitabine. Cancer Cell Int. 2014;14:98. https://doi.org/10.1186/s12935-014-0098-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Morotomi-Yano K, Akiyama H, Yano K. Nanosecond pulsed electric fields activate MAPK pathways in human cells. Arch Biochem Biophys. 2011;515:99–106. https://doi.org/10.1016/j.abb.2011.09.002.

    Article  CAS  PubMed  Google Scholar 

  69. Morotomi-Yano K, Oyadomari S, Akiyama H, Yano K. Nanosecond pulsed electric fields act as a novel cellular stress that induces translational suppression accompanied by eIF2α phosphorylation and 4E-BP1 dephosphorylation. Exp Cell Res. 2012;318:1733–44. https://doi.org/10.1016/j.yexcr.2012.04.016.

    Article  CAS  PubMed  Google Scholar 

  70. Morotomi-Yano K, Akiyama H, Yano K. Nanosecond pulsed electric fields activate AMP-activated protein kinase: implications for calcium-mediated activation of cellular signaling. Biochem Biophys Res Commun. 2012;428:371–5. https://doi.org/10.1016/j.bbrc.2012.10.061.

    Article  CAS  PubMed  Google Scholar 

  71. Gao C, Zhang X, Chen J, Zhao J, Liu Y, Zhang J, Wang J. Utilizing the nanosecond pulse technique to improve antigen intracellular delivery and presentation to treat tongue squamous cell carcinoma. Med Oral Patol Oral Cir Bucal. 2018;23:e344–50. https://doi.org/10.4317/medoral.22227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaufman D, Martinez M, Jauregui L, Ebbers E, Nuccitelli R, Knape WA, Uecker D, Mehregan D. A dose-response study of a novel method of selective tissue modification of cellular structures in the skin with nanosecond pulsed electric fields. Lasers Surg Med. 2020;52:315–22. https://doi.org/10.1002/lsm.23145.

    Article  PubMed  Google Scholar 

  73. Nuccitelli R, Wood R, Kreis M, Athos B, Huynh J, Lui K, Nuccitelli P, Epstein EH. First-in-human trial of nanoelectroablation therapy for basal cell carcinoma: proof of method. Exp Dermatol. 2014;23:135–7. https://doi.org/10.1111/exd.12303.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol. 2002;2:965–75. https://doi.org/10.1038/nri957.

    Article  CAS  PubMed  Google Scholar 

  75. Tougeron D, Fauquembergue E, Latouche J-B. Immune response and colorectal cancer. Bull Cancer. 2013;100:283–94. https://doi.org/10.1684/bdc.2013.1716.

    Article  CAS  PubMed  Google Scholar 

  76. Atreya I, Neurath MF. Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies. Exp Rev Anticancer Ther. 2008;8:561–72. https://doi.org/10.1586/14737140.8.4.561.

    Article  CAS  Google Scholar 

  77. Rubbia-Brandt L, Giostra E, Brezault C, Roth AD, Andres A, Audard V, Sartoretti P, Dousset B, Majno PE, Soubrane O, Chaussade S, Mentha G, Terris B. Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery. Ann Oncol. 2007;18:299–304. https://doi.org/10.1093/annonc/mdl386.

    Article  CAS  PubMed  Google Scholar 

  78. Passot G, You B, Boschetti G, Fontaine J, Isaac S, Decullier E, Maurice C, Vaudoyer D, Gilly F-N, Cotte E, Glehen O. Pathological response to neoadjuvant chemotherapy: a new prognosis tool for the curative management of peritoneal colorectal carcinomatosis. Ann Surg Oncol. 2014;21:2608–14. https://doi.org/10.1245/s10434-014-3647-0.

    Article  PubMed  Google Scholar 

  79. Bardet SM, Cortese J, Blanc R, Mounayer C, Rouchaud A. Multiphoton microscopy for pre-clinical evaluation of flow-diverter stents for treating aneurysms. J Neuroradiol. 2020. https://doi.org/10.1016/j.neurad.2020.03.005.

    Article  PubMed  Google Scholar 

  80. Taibi A, Lo Dico R, Kaci R, Naneix AL, Malgras B, Mathonnet M, Pocard M. Evaluation of a new histological grading system for assessing the response to chemotherapy of peritoneal metastases from colorectal cancer: a mouse model study. Eur J Surg Oncol. 2020;46:160–5. https://doi.org/10.1016/j.ejso.2019.09.008.

    Article  PubMed  Google Scholar 

  81. Benzerdjeb N, Durieux E, Tantot J, Isaac S, Fontaine J, Harou O, Glehen O, Kepenekian V, Alyami M, Villeneuve L, Laplace N, Traverse-Glehen A, Shisheboran-Devouassoux M, et al. Prognostic impact of combined progression index based on peritoneal grading regression score and peritoneal cytology in peritoneal metastasis. Histopathology. 2020;77(4):548–59. https://doi.org/10.1111/his.14092.

    Article  PubMed  Google Scholar 

  82. Taibi A, Dico R, Kaci R, Naneix AL, Mathonnet M, Pocard M. Impact of preoperative chemotherapy on the histological response of patients with peritoneal metastases from colorectal cancer according to peritoneal regression grading score (PRGS) and TRG. Surg Oncol. 2020;33:158–63. https://doi.org/10.1016/j.suronc.2020.02.014.

    Article  PubMed  Google Scholar 

  83. Lee ZJ, Chia SL, Tan G, Soo KC, Teo CCM. Cost effectiveness of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for management of colorectal peritoneal carcinomatosis. Ann Surg Oncol. 2018;25:2340–6. https://doi.org/10.1245/s10434-018-6508-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R Bachelot for his interest during his master for multiphoton microscopy/HIPEC, Pr. M Pocard (CART Inserm U965) for the technical support regarding cell culture and P Leveque and D Arnaud-Cormos for lending the exposure system. This work benefited from government support managed by the National Research Agency under the Investments for the future program with the reference ANR-10-LABX-0074-01 Sigma-LIM, and funds from the Limoges Hospital committee for research orientation in oncology (CORC « Carcinopulse » 2018). This research was conducted in the scope of GDR HappyBio (CNRS) and LEA-EBAM, a European Associated Laboratory titled “Pulsed Electric Fields Applications in Biology and Medicine”.

Funding

This work benefited from government support managed by the National Research Agency under the Investments for the future program with the reference ANR-10-LABX-0074–01 Sigma-LIM, and was also supported by funds from the Limoges Hospital committee for research orientation in oncology (CORC « Carcinopulse» 2018).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: AT, SDF, SB. Provision of study materials or patients: AT, M-LP, SB. Data and statistical analysis and interpretation: AT and SB. Drafting and editing of manuscript: all authors. Critical manuscript review and approval of final version: all authors.

Corresponding author

Correspondence to S. M. Bardet.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human participants and/or animals

The use of animals was approved by the local Ethics and Animal Care Committee (registration number: 2017102611003706, Sylvia M Bardet). All animal care and experimental procedures were conducted in conformity with 2013 French legislation, which is in accordance with European Community guidelines (directive 2010/63/UE for the Care and Use of Laboratory Animals).

Informed consent

For this study, we obtained the consent for all the patients

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12094_2020_2525_MOESM1_ESM.tiff

Supplementary file1 Supplementary Figure 1: Dose-dependant results for mitomycin and oxaliplatin. Cell viability was assessed by MTT assays after 24 h (white dots) and 48 h (black dots) of treatment (data for 72 h are not shown). The IC50 values for the 24-h treatment were 17.5 µg/ml for mitomycin and 200 µg/ml for oxaliplatin. (TIFF 2275 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taibi, A., Perrin, ML., Albouys, J. et al. 10 ns PEFs induce a histological response linked to cell death and cytotoxic T-lymphocytes in an immunocompetent mouse model of peritoneal metastasis. Clin Transl Oncol 23, 1220–1237 (2021). https://doi.org/10.1007/s12094-020-02525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02525-1

Keywords

Navigation