Log in

Enhanced Production of Gamma-Aminobutyric Acid (GABA) from Lactobacillus futsaii CS3 Using Agri-Food Industries By-Products Under Batch and Fed-Batch Fermentation

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Gamma-aminobutyric acid (GABA) has diverse physiological functions, but its production by lactic acid bacteria is costly due to the culture medium. This study aimed to enhance GABA production by L. futsaii CS3 using low-cost substrates and agri-food industries by-products. Optimal culture conditions were determined using response surface methodology with a central composite design (CCD). Batch and fed-batch fermentation techniques were employed. In the MRS medium with 2% (w/v) monosodium glutamate (MSG), L. futsaii CS3 produced 6.84 g/l of GABA. Further optimization revealed that 2% (w/v) cane sugar resulted in a maximum GABA production of 9.6 g/l, while cane molasses yielded 7.4 g/l. The modified MRS medium with 2% (w/v) MSG, 2% (w/v) cane sugar, 3.06% (w/v) tuna condensate, and 2.5% (w/v) surimi washing water exhibited the highest GABA concentration of 11 g/l. Surimi washing water had a lower GABA concentration of 4.12 g/l. Critical factors identified through CCD analysis were cane sugar, tuna condensate, and MSG. The optimized modified MRS medium consisted of 3.48% (w/v) cane sugar, 3.84% (w/v) tuna condensate, and 10.77% (w/v) MSG, resulting in an actual GABA concentration of 18.27 g/l. Under flask-scale and batch fermentation conditions (initial pH 5, temperature 37 °C), GABA concentrations of 20.63 g/l and 17.24 g/l were obtained after 48 h, respectively. In fed-batch fermentation, GABA concentrations reached 23.01 g/l at 72 h. The addition of cane sugar and tuna condensate effectively enhanced GABA production in L. futsaii CS3, highlighting their suitability as cost-effective substrates for industrial-scale GABA production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data included in this study are available from the corresponding author upon reasonable request author.

References

  1. Afonso D, Borguez R (2002) Review of treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processes-prospects of the ultrafiltration of wastewaters from the fish meal industry. Desalin 142:29–45. https://doi.org/10.1016/S0011-9164(01)00423-4

    Article  CAS  Google Scholar 

  2. Binh TTT, Ju WT, Jung WJ, Park RD (2013) Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis. Biotechnol Lett 10:1007–10013. https://doi.org/10.1007/s10529-013-1326-z

    Article  CAS  Google Scholar 

  3. Cho YR, Chang JY, Chang HC (2007) Production of gamma aminobutyric by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 17:104–109

    CAS  PubMed  Google Scholar 

  4. Cui Y, Miao K, Niyaphorn S, Qu X (2020) Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review. Int J Mol Sci 21:1–21. https://doi.org/10.3390/ijms21030995

    Article  CAS  Google Scholar 

  5. H-Kittikun A, Bourneow C, Benjakul S (2012) Hydrolysis of surimi wastewater for production of transglutaminase by Enterobacter sp. C2361 and Providencia sp. C1112. Food Chem 135:1183–1191. https://doi.org/10.1016/j.foodchem.2012.05.044

    Article  CAS  PubMed  Google Scholar 

  6. Kim DH, Dasagrandhib C, Parka SK, Eomc SH, Huhc MK, Mokd JS, Kim YM (2018) Optimization of gamma-aminobutyric acid production using sea tangle extract by lactic acid bacterial fermentation. J Food Sci 90:636–642. https://doi.org/10.1016/j.lwt.2018.01.011

    Article  CAS  Google Scholar 

  7. Liao WC, Wang CY, Shyu YT, Yu RC, Ho KC (2013) Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J Funct Foods 5:1108–1115. https://doi.org/10.1016/j.jff.2013.03.006

    Article  CAS  Google Scholar 

  8. Li HX, Cao YS (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39:1107–1116. https://doi.org/10.1007/s00726-010-0582-7

    Article  CAS  PubMed  Google Scholar 

  9. Li H, Gao D, Cao Y, Xu H (2008) A high γ-aminobutyric acid-producing ability: Lactobacillus brevis isolated from Chinese traditional paocai. Ann Microbiol 58:649–653. https://doi.org/10.1007/BF03175570

    Article  CAS  Google Scholar 

  10. Li H, Qiu T, Huang G, Cao Y (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:1–7. https://doi.org/10.1186/1475-2859-9-85

    Article  CAS  Google Scholar 

  11. Lin S, Chen L, Chen H (2005) The change of thermal gelation properties of horse mackerel mince led by protein denaturation occurring in frozen storage and consequential air floatation wash. Food Res Int 38:19–27. https://doi.org/10.1016/j.foodres.2004.08.001

    Article  CAS  Google Scholar 

  12. Luo X, Wang Y, Li Q, Wang D, **ng C, Zhang L, Xu T, Fang F, Wang F (2018) Accumulating mechanism of γ-aminobutyric acid in soybean (Glycine max L.) during germination. Int J Food Sci Technol 53:106–111. https://doi.org/10.1111/ijfs.13563

    Article  CAS  Google Scholar 

  13. Mohd Lazim MI, Mohamad S, Abdul Rahman I, Koh SP, Abdul Manan M, Mohd Asri MA (2023) Optimization of process parameters for GABA and L-DOPA production on fermented coconut drink. Food Res 4:102–108. https://doi.org/10.26656/fr.2017.6(S4).012

    Article  Google Scholar 

  14. Nguyen-Sy T, Yew GY, Chew KW, Nguyen TDP, Tran TNT, Le TDH, Vo CT, Tran HKP, Mubashir M, Show PL (2020) Potential cultivation of Lactobacillus pentosus from human breastmilk with rapid monitoring through the spectrophotometer method. Processes 8:902. https://doi.org/10.3390/pr8080902

    Article  CAS  Google Scholar 

  15. Palmonari A, Cavallini D, Sniffen J, Fernandes L, Holder P, Fagioli L, Fusaro I, Biagi G, Formigoni A, Mammi L (2020) Short communication: characterization of molasses chemical composition. J Diary Sci 103(7):6244–6249. https://doi.org/10.3168/jds.2019-17644

    Article  CAS  Google Scholar 

  16. Park SJ, Kim DH, Kang HJ, Shin M, Yang SY, Yang J, Jung YH (2021) Enhanced production of γ-aminobutyric acid (GABA) using Lactobacillus plantarum EJ2014 with simple medium composition. LWT-Food Sci Technol 137:110443. https://doi.org/10.1016/j.lwt.2020.110443

    Article  CAS  Google Scholar 

  17. Prasertsan P, Jaturapornpipat M, Siripatana C (1997) Utilization and treatment of tuna condensate by photosynthetic bacteria. Pure Appl Chem 89:2439–2445. https://doi.org/10.1351/pac199769112439

    Article  Google Scholar 

  18. Sanchart C, Rattanaporn O, Haltrich D, Phukpattaranont P, Maneerat S (2017) Enhancement of gamma-aminobutyric acid (GABA) levels using an autochthonous Lactobacillus futsaii CS3 as starter culture in Thai fermented shrimp (Kung-Som). World J Microbiol Biotechnol 33:152. https://doi.org/10.1007/s11274-017-2317-3

    Article  CAS  PubMed  Google Scholar 

  19. Sarasa SB, Mahendran R, Muthusamy G, Thankappan B, Selta DRF, Angayarkann J (2020) A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): its production and role in microbes. Curr Microbiol 77:534–544. https://doi.org/10.1007/s00284-019-01839-w

    Article  CAS  PubMed  Google Scholar 

  20. Sanchart C, Rattanaporn O, Haltrich D, Phukpattaranont P, Maneerat S (2016) Lactobacillus futsaii CS3, a new GABA-producing strain isolated from Thai fermented shrimp (Kung-Som). Indian J Microbiol 57:211–217. https://doi.org/10.1007/s12088-016-0632-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanchart C, Rattanaporn O, Haltrich D, Phukpattaranont P, Maneerat S (2016) Technological and safety properties of newly isolated GABA-producing Lactobacillus futsaii strains. J Appl Microbiol 121:734–745. https://doi.org/10.1111/jam.13168

    Article  CAS  PubMed  Google Scholar 

  22. Thuy DTB, Nguyen AT, Khoo KS, Chew KW, Cnockaert M, Vandamme P, Ho YC, Huy ND, Cocoletzi HH, Show PL (2021) Optimization of culture conditions for gamma-aminobutyric acid production by newly identified Pediococcus pentosaceus MN12 isolated from ‘mam nem’, a fermented fish sauce. Bioengineered 12(1):54–62. https://doi.org/10.1080/21655979.2020.1857626

    Article  CAS  PubMed  Google Scholar 

  23. Vann K, Techaparin A, Apiraksakorn J (2020) Beans germination as a potential tool for GABA-enriched tofu production. J Food Sci Technol 57:3947–3954. https://doi.org/10.1007/s13197-020-04423-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Q, Liu X, Fu J, Wang S, Chen Y, Chang K, Li H (2018) Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912. Micro Cell Fact 17:80. https://doi.org/10.1186/s12934-018-0919-6

    Article  CAS  Google Scholar 

  25. Wang Y, Liu C, Ma T, Zhao J (2019) Physicochemical and functional properties of γ-aminobutyric acid-treated soy proteins. Food Chem 295:267–273. https://doi.org/10.1016/j.foodchem.2019.05.128

    Article  CAS  PubMed  Google Scholar 

  26. Wang Q, **n Y, Zhang F, Feng Z, Fu J, Luo L, Yin Z (2011) Enhanced γ-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli. World J Microbiol Biotechnol 27:693–700. https://doi.org/10.1007/s11274-010-0508-2

    Article  CAS  Google Scholar 

  27. Wu Q, Shah NP (2018) Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification. Food Microbiol 69:151–158. https://doi.org/10.1016/j.fm.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  28. Yang SY, Lu FX, Lu ZX, Bie XM, Jiao Y, Sun LJ, Yu B (2008) Production of gamma-aminobutyric acid by Streptococcus salivariu. subsp. thermophilus Y2 under submerged fermentation. Amino Acids 34:473–478. https://doi.org/10.1007/s00726-007-0544-x

    Article  CAS  PubMed  Google Scholar 

  29. Yokoyama S, Hiramatsu J, Hayakawa K (2002) Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J Biosci Bioeng 93:95–97. https://doi.org/10.1016/S1389-1723(02)80061-5

    Article  CAS  PubMed  Google Scholar 

  30. Yogeswara IBA, Kittibunchakul S, Rahayu ES, Domig KJ, Haltrich D (2021) Thu Ha Nguyen.: Microbial production and Eenzymatic biosynthesis of γ-aminobutyric acid (GABA) using Lactobacillus plantarum FNCC 260 isolated from Indonesian fermented foods. Processes 9:22. https://doi.org/10.3390/pr9010022

    Article  CAS  Google Scholar 

  31. Yogeswara IBA, Maneerat S, Haltrich D (2020) Glutamate decarboxylase from lactic acid bacteria-a key enzyme in GABA synthesis. Microorganisms 8:1923. https://doi.org/10.3390/microorganisms8121923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Zhu M, Lu W, Zhang C, Chen D, Shah NP, **ao C (2023) Optimizing Levilactobacillus brevis NPS-QW 145 fermentation for gamma-aminobutyric acid (GABA) production in soybean sprout yogurt-like product. Foods 12:1–14. https://doi.org/10.3390/foods12050977

    Article  CAS  Google Scholar 

  33. Zhuang K, Jiang Y, Feng X, Li L, Dang F, Zhang W, Man C (2018) Transcriptomic response to GABA-producing Lactobacillus plantarum CGMCC 1.2437T induced by L-MSG. PLoS ONE 13:e0199021. https://doi.org/10.1371/journal.pone.0199021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by Thesis Research Grant, and the PSU-Ph.D. Scholarship, Graduate School, Prince of Songkla University. Some part of this research work was financially supported by Institute of Food Research and Innovation, Research and Development Office, Prince of Songkla University (FIRIn 2559/011).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by KT. The first draft of the manuscript was written by KT. SM supervised and approved the final manuscript.

Corresponding author

Correspondence to Suppasil Maneerat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongruck, K., Maneerat, S. Enhanced Production of Gamma-Aminobutyric Acid (GABA) from Lactobacillus futsaii CS3 Using Agri-Food Industries By-Products Under Batch and Fed-Batch Fermentation. Indian J Microbiol 63, 467–482 (2023). https://doi.org/10.1007/s12088-023-01101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01101-9

Keywords

Navigation