Log in

Generation and Characterization of a scFv Antibody Against T3SS Needle of Vibrio parahaemolyticus

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus, a halophilic gram-negative bacterium, is a food-borne pathogen that largely inhabits marine and estuarine environments, and poses a serious threat to human and animal health all over the world. The hollow “needle” channel, a specific assemble of T3SS which exists in most of gram-negative bacteria, plays a key role in the transition of virulence effectors to host cells. In this study, needle protein VP1694 was successfully expressed and purified, and the fusion protein Trx-VP1694 was used to immunize Balb/c mice. Subsequently, a phage single-chain fragment variable antibody (scFv) library was constructed, and a specific scFv against VP1694 named scFv-FA7 was screened by phage display panning. To further identify the characters of scFv, the soluble expression vector pACYC-scFv-skp was constructed and the soluble scFv was purified by Ni2+ affinity chromatography. ELISA analysis showed that the scFv-FA7 was specific to VP1694 antigen, and its affinity constant was 1.07 × 10L/mol. These results offer a molecular basis to prevent and cure diseases by scFv, and also provide a new strategy for further research on virulence mechanism of T3SS in V. parahaemolyticus by scFv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shimohata T, Takahashi A (2010) Diarrhea induced by infection of Vibrio parahaemolyticus. J Med Invest 57:179–182

    Article  PubMed  Google Scholar 

  2. McLaughlin JB, DePaole A, Bopp CA et al (2005) Outbreak of Vibrio parahaemolyticus gastroent-eritis associated with Alaskan oysters. N Engl J Med 353:1463–1470

    Article  CAS  PubMed  Google Scholar 

  3. Wang RZ, Huang JD, Zhang W et al (2011) Detection and identification of Vibrio parahaemolyticus bymultiplex PCR andDNA–DNA hybridization on a microarray. J Genet Genomics 38:129–135

    Article  PubMed  Google Scholar 

  4. Hardy WG, Klontz KC (1996) The epidemiology of Vibrio infections in Florida, 1981-1993. Infect Dis 173:1176–1183

    Article  Google Scholar 

  5. Makino K, Oshima K, Kurokawa K et al (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 361:743–749

    Article  CAS  PubMed  Google Scholar 

  6. Park KS, Ono T, Rokuda M et al (2004) Functional characterization of two III secretion systems of Vibrio parahaemolyticus. Infect Immun 72:6659–6665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Mota LJ, Sorg I, Cornelis GR (2005) Type III secretion: the bacteria-eukaryotic cell express. FEMS Microbiol Lett 252:1–10

    Article  CAS  PubMed  Google Scholar 

  9. Worrall LJ, Lameignere E, Strynadka NC (2011) Structural overview of the bacterial injectisome. Curr Opin Microbiol 14:3–8

    Article  CAS  PubMed  Google Scholar 

  10. Marlovits TC, Kubori T, Sukhan A et al (2004) Structural insights into the assembly of the type III secretion Needle complex. Science 306:1040–1042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Deane JE, Abrusci P, Johnson S, Lea SM (2010) Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67:1065–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Veenendaal AK, Hodagkinson JL, Schwarzer L et al (2007) The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 63:1719–1730

    Article  CAS  PubMed  Google Scholar 

  13. Matteï PJ, Faudry E, Job V et al (2011) Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 278:414–426

    Article  PubMed  Google Scholar 

  14. Quinaud M, Plé S, Job V et al (2007) Structure of the heterotrimeric complex that regulates type III secretion needle formation. Proc Natl Acad Sci USA 104:7803–7805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sun P, Tropea JE, Austin BP, Cherry S, Waugh DS (2008) Structural characterization of the Yersinia pestis type III secretion needle protein YscF in complex with its heterodimeric chaperone YscE/YscG. J Mol Biol 377:819–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Liverman ADB, Cheng HC, Trosky JE et al (2007) Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc Natl Acad Sci USA 104:17117–17122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Burdette DL, Seemann J, Orth K (2009) Vibrio VopQ induces P13-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol 73:639–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Trosky JE, Li Y, Mukherjee S et al (2007) VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J Biol Chem 282:34299–34305

    Article  CAS  PubMed  Google Scholar 

  19. Bhattacharjee RN, Park KS, Kumagai Y et al (2006) VP1686, a Vibrio type III secretion protein, induces toll-like receptor-independent apoptosis in macrophage through NF-κB inhibition. J Biol Chem 281:36897–36904

    Article  CAS  PubMed  Google Scholar 

  20. Tamano K (2000) Supra molecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J 19:3876–3887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Blocker AJ, Deane JE, Veenendaal AK et al (2008) What’s the point of the type III secretion system needle? Proc Natl Acad Sci USA 105:6507–6513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Davis AJ, Mecsas J (2007) Mutations in the Yersinia pseudotuberculosis type III secretion system needle protein, YscF, that specifically abrogate effector translocation into host cells. J Bacteriol 189:83–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Andreas KJ, Charlotta S, Ariel J (2009) Small molecule type III secretion system inhibitors block assembly of the shigella type III secretion. J Bacteriol 191:563–570

    Article  Google Scholar 

  24. Gauthier A, Robertson ML, Lowden M et al (2005) Transcriptional inhibitor of virulence factors in enteropathogenic Escherichia coli. Antimicrob Agents Ch 49:4101–4109

    Article  CAS  Google Scholar 

  25. Pan N, Lee C, Goguen J (2007) High throughput screening for small molecule inhibitors of type III secretion in Yersinia pestis. Adv Exp Med Biol 603:367–375

    Article  PubMed  Google Scholar 

  26. Lzoré T, Job V, Dessen A (2011) Biogenesis, regulation, and targeting of the type III SZECRETION system. Structure 19:603–612

    Article  Google Scholar 

  27. Wang RZ, Fang S, Wu DL et al (2012) Screening of a ScFv antibody that can neutralize effectively the cytotoxicity of Vibrio parahaemolyticus TLH. Appl Environ Microbiol 78:4967–4975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hagemeyer CE, Schwarz M, Peter K (2007) Single-chain antibodies as new antithrombotic drugs. Semin Thromb Hemost 33:185–195

    Article  CAS  PubMed  Google Scholar 

  29. Hagemeyer CE, Von Zur Muhlen C et al (2009) Single-chain antibodies as diagnostic tools and therapeutic agents. J Thromb Haemost 101:1012–1019

    CAS  Google Scholar 

  30. Wang SH, Zhang JB, Zhang ZP et al (2006) Construction of single chain variable fragment (ScFv) and biscFv-alkaline phosphatase fusion protein for detection of Bacillus anthracis. Anal Chem 78:997–1004

    Article  CAS  PubMed  Google Scholar 

  31. Kabat EA, Wu TT, Gottesman KS, Foeller C (1991) Sequences of proteins of immunological interest. Diane Publishing Company, Darby

    Google Scholar 

  32. Singh PK, Agrawal R, Kamboj DV et al (2010) Construction of a single chain variable fragment antibody against the superantigen staphylococcal enterotoxin B. Appl Environ Microbiol 76:8184–8191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dai HP, Gao H, Qiao P (2003) Construction and characterization of a novel recombinant single-chain variable fragment antibody against white spot syndrome virus from shrimp. J Immun Method 279:267–275

    Article  CAS  Google Scholar 

  34. Huston JS, Levinson D, Mudgett-Hunter M et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 85:5879–5883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Skerra A, Pluckthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escbericbia coli. Science 240:1038–1041

    Article  CAS  PubMed  Google Scholar 

  36. Top** KP, Hough VC, Monson JR, Greenman J (2000) Isolation of human colorectal tumor reactive antibodies using phage display technology. Int J Oncol 16:187–195

    CAS  PubMed  Google Scholar 

  37. Chadd HE, Chamow SM (2001) Therapeutic antibody expression technology. Curr Opin Biotech 12:188–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University (Grant NCET-10-0010), the Fujian Fund for Distinguished Young Scientists (Grant 2009J06008), the National Agricultural Achievements Transformation Fund (Grant 2011GB2C400012), and Agricultural Five-new Engineering Projects of Fujian Development and Reform Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Fang, S., **ang, S. et al. Generation and Characterization of a scFv Antibody Against T3SS Needle of Vibrio parahaemolyticus . Indian J Microbiol 54, 143–150 (2014). https://doi.org/10.1007/s12088-013-0428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-013-0428-6

Keywords

Navigation