Log in

Possible strategies for anti-fibrotic drug intervention in scleroderma

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

There are no approved drugs for treating the fibrosis in scleroderma (systemic sclerosis, SSc). Myfibroblasts within connective tissue express the highly contractile protein α–smooth muscle actin (α–SMA) and are responsible for the excessive synthesis and remodeling of extracellular matrix (ECM) characterizing SSc. Drugs targeting myofibroblast differentiation, recruitment and activity are currently under consideration as anti-fibrotic treatments in SSc but thus far have principally focused on the transforming growth factor β (TGFβ), endothelin-1 (ET-1), connective tissue growth factor (CCN2/CTGF) and platelet derived growth factor (PDGF) pathways, which display substantial signaling crosstalk. Moreover, peroxisome proliferator-activated receptor (PPAR)γ also appears to act by intervening in TGFβ signaling. This review discusses these potential candidates for antifibrotic therapy in SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmetshina A, Dees C, Pileckyte M, Maurer B, Axmann R, Jüngel A, Zwerina J, Gay S, Schett G, Distler O, Distler JH (2008) Dual inhibition of c-abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis. FASEB J 22:2214–2222

    Article  PubMed  CAS  Google Scholar 

  • Bianco P, Robey PG, Saggio I, Riminucci M (2010) “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum Gene Ther 21:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15:255–273

    Article  PubMed  CAS  Google Scholar 

  • Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M et al (2005) PPARγ agonists inhibit TGF-β induced pulmonary myofibroblasts differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 288:L1146–L1153

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Abraham DJ, Shi-Wen X, Pearson JD, Black CM, Lyons KM, Leask A (2004) CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol Biol Cell 15:5635–5646

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Shiwen X, van Beek J, Kennedy L, McLeod M, Renzoni EA, Bou-Gharios G, Wilcox-Adelman S, Goetinck PF, Eastwood M, Black CM, Abraham DJ, Leask A (2005) Matrix contraction by dermal fibroblasts requires TGFbeta/ALK5, heparan sulfate containing proteoglycans and MEK/ERK: insights into pathological scarring in chronic fibrotic disease Am. J Pathol 167:1699–1711

    CAS  Google Scholar 

  • Chen Y, Shi-wen X, Eastwood M, Black CM, Denton CP, Leask A, Abraham DJ (2006) Contribution of activin receptor-like kinase 5 (transforming growth factor beta receptor type I) signaling to the fibrotic phenotype of scleroderma fibroblasts. Arthritis Rheum 54(4):1309–1316

    Article  PubMed  CAS  Google Scholar 

  • Clozel M, Salloukh H (2005) Role of endothelin in fibrosis and anti-fibrotic potential of bosentan. Ann Med 37:2–12

    Article  PubMed  CAS  Google Scholar 

  • Denton CP, Black CM, Abraham DJ (2006) Mechanisms and consequences of fibrosis in systemic sclerosis. Nat Clin Pract Rheumatol 2:134–144

    Article  PubMed  Google Scholar 

  • Denton CP, Merkel PA, Furst DE, Khanna D, Emery P, Hsu VM, Silliman N, Streisand J, Powell J, Akesson A, Coppock J, Hoogen F, Herrick A, Mayes MD, Veale D, Haas J, Ledbetter S, Korn JH, Black CM, Seibold JR, Cat-192 Study Group, Scleroderma Clinical Trials Consortium (2007) Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum 56:323–333

    Article  PubMed  CAS  Google Scholar 

  • Denton CP, Pope JE, Peter HH, Gabrielli A, Boonstra A, van den Hoogen FH, Riemekasten G, De Vita S, Morganti A, Dölberg M, Berkani O, Guillevin L, TRacleer Use in PAH associated with Scleroderma and Connective Tissue Diseases (TRUST) Investigators (2008) Long-term effects of bosentan on quality of life, survival, safety and tolerability in pulmonary arterial hypertension related to connective tissue diseases. Ann Rheum Dis 67:1222–1228

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    Article  PubMed  CAS  Google Scholar 

  • Ghosh AK, Varga J (2007) The transcriptional coactivator and acetyltransferase p300 in fibroblast biology and fibrosis. J Cell Physiol 213:663–671

    Article  PubMed  CAS  Google Scholar 

  • Ghosh AK, Bhattacharyya S, Wei J, Kim S, Barak Y, Mori Y, Varga J (2009) Peroxisome proliferator-activated receptor-gamma abrogates Smad-dependent collagen stimulation by targeting the p300 transcriptional coactivator. FASEB J 23:2968–2977

    Article  PubMed  CAS  Google Scholar 

  • Grotendorst GR (1997) Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev 8:171–179

    Article  PubMed  CAS  Google Scholar 

  • Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Abraham DJ, Sa S, Shiwen X, Black CM, Leask A (2001) CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem 276:10594–10601

    Article  PubMed  CAS  Google Scholar 

  • Ishida W, Mori Y, Lakos G, Sun L, Shan F, Bowes S, Josiah S, Lee WC, Singh J, Ling LE, Varga J (2006) Intracellular TGF-beta receptor blockade abrogates Smad-dependent fibroblast activation in vitro and in vivo. J Invest Dermatol 126:1733–1744

    Article  PubMed  CAS  Google Scholar 

  • Kapoor M, McCann M, Liu S, Huh K, Denton CP, Abraham DJ, Leask A (2009) Loss of peroxisome proliferator-activated receptor gamma in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis. Arthritis Rheum 60:2822–2829

    Article  PubMed  CAS  Google Scholar 

  • Korn JH, Mayes M, Matucci Cerinic M, Rainisio M, Pope J, Hachulla E, Rich E, Carpentier P, Molitor J, Seibold JR, Hsu V, Guillevin L, Chatterjee S, Peter HH, Coppock J, Herrick A, Merkel PA, Simms R, Denton CP, Furst D, Nguyen N, Gaitonde M, Black C (2004) Digital ulcers in systemic sclerosis: prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum 50:3985–3993

    Article  PubMed  CAS  Google Scholar 

  • Kuhn A, Haust M, Ruland V, Weber R, Verde P, Felder G, Ohmann C, Gensch K, Ruzicka T (2010) Effect of bosentan on skin fibrosis in patients with systemic sclerosis: a prospective, open-label, non-comparative trial. Rheumatol Oxford 49:1336–1345

    Article  CAS  Google Scholar 

  • Leask A (2008) Targeting the TGFβ, endothelin-1 and CCN2 axis to combat fibrosis in scleroderma. Cell Signal 20:1409–1414

    Article  PubMed  CAS  Google Scholar 

  • Leask A (2009) Yin and Yang: CCN3 inhibits the pro-fibrotic effects of CCN2. J Cell Commun Signal 3:161–162

    Article  PubMed  Google Scholar 

  • Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18:816–827

    Article  PubMed  CAS  Google Scholar 

  • Leask A, Abraham DJ, Finlay DR, Holmes A, Pennington D, Shi-Wen X, Chen Y, Venstrom K, Dou X, Ponticos M, Black C, Bernabeu C, Jackman JK, Findell PR, Connolly MK (2002) Dysregulation of transforming growth factor beta signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts. Arthritis Rheum 46:1857–1865

    Article  PubMed  CAS  Google Scholar 

  • Leask A, Holmes A, Black CM, Abraham DJ (2003) Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem 278:13008–13015

    Article  PubMed  CAS  Google Scholar 

  • Leask A, Parapuram SK, Shi-Wen X, Abraham DJ (2009) Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease? J Cell Commun Signal 3:89–94

    Article  PubMed  Google Scholar 

  • Liu S, Shi-wen X, Kennedy L, Pala D, Carter DE, Black CM, Abraham DJ, Leask A (2007) FAK is required for TGFβ-induced JNK phosphorylation in fibroblasts: implications for acquisition of a matrix remodeling phenotype. Mol Biol Cell 18:2169–2178

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Kapoor M, Denton CP, Abraham DJ, Leask A (2009) Loss of β1 integrin in mouse fibroblasts results in resistance to a mouse model of skin scleroderma. Arthritis Rheum 60:2817–2821

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Taghavi R, Leask A (2010) Connective tissue growth factor is induced in bleomycin-induced skin scleroderma. J Cell Commun Signal 4:25–30

    Article  PubMed  Google Scholar 

  • Liu S, Shi-Wen X, Abraham DJ, Leask A (2011) CCN2 is required for bleomycin-induced skin fibrosis. Arthritis Rheum 63:239–246

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K (1999) Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol 181:153–159

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Hinchcliff M, Wu M, Warner-Blankenship M, Lyons K, Varga J (2008) Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-beta responsiveness. Exp Cell Res 314:1094–1104

    Article  PubMed  CAS  Google Scholar 

  • Moussad EE, Brigstock DR (2000) Connective tissue growth factor: what’s in a name? Mol Genet Metab 71:276–292

    Article  PubMed  CAS  Google Scholar 

  • Pannu J, Nakerakanti S, Smith E, ten Dijke P, Trojanowska M (2007) Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways. J Biol Chem 282:10405–10413

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Saleh D, Giaid A, Michel RP (1997) Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am J Respir Crit Care Med 156(2 Pt 1):600–608

    PubMed  CAS  Google Scholar 

  • Ponticos M, Holmes AM, Shiwen X, Pl L, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, Abraham DJ, Leask A, Lindahl GE (2009) Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum 60:2142–2155

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar VS, Sundberg C, Abraham DJ, Rubin K, Black CM (1999) Activation of microvascular pericytes in autoimmune Raynaud’s phenomenon and systemic sclerosis. Arthritis Rheum 42:930–941

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M, Gerdin B, Denton CP, Bou-Gharios G, Black CM, Abraham DJ (2006) Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 169:2254–2265

    Article  PubMed  CAS  Google Scholar 

  • Riser BL, Najmabadi F, Perbal B, Peterson DR, Rambow JA, Riser ML, Sukowski E, Yeger H, Riser SC (2009) CCN3 (NOV) is a negative regulator of CCN2 (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease. Am J Pathol 174:1725–1734

    Article  PubMed  CAS  Google Scholar 

  • Santander C, Brandan E (2006) Betaglycan induces TGF-beta signaling in a ligand-independent manner, through activation of the p38 pathway. Cell Signal 18:1482–1491

    Article  PubMed  CAS  Google Scholar 

  • Seibold JR, Denton CP, Furst DE, Guillevin L, Rubin LJ, Wells A, Matucci Cerinic M, Riemekasten G, Emery P, Chadha-Boreham H, Charef P, Roux S, Black CM (2010) Randomized, prospective, placebo-controlled trial of bosentan in interstitial lung disease secondary to systemic sclerosis. Arthritis Rheum 62:2101–2108

    Article  PubMed  CAS  Google Scholar 

  • Shi-Wen X, Chen Y, Denton CP, Eastwood M, Renzoni EA, Bou-Gharios G, Pearson JD, Dashwood M, du Bois RM, Black CM, Leask A, Abraham DJ (2004) Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell 15:2707–2719

    Article  PubMed  Google Scholar 

  • Shi-wen X, Howat SL, Renzoni EA, Holmes A, Pearson JD, Dashwood MR, Bou-Gharios G, Denton CP, du Bois RM, Black CM, Leask A, Abraham DJ (2004) Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through MEK/ERK. J Biol Chem 279:23098–23103

    Article  Google Scholar 

  • Shi-wen X, Rodrigues-Pascual F, Lamas S, Holmes A, Howat S, Pearson JD, Dashwood MR, du Bois RM, Denton CP, Black CM, Abraham DJ, Leask A (2006a) Constitutive ALK5-indepenent JNK activation contributes to endothelin-1 over-expression in pulmonary fibrosis. Mol Cell Biol 26:5518–5527

    Article  PubMed  Google Scholar 

  • Shi-wen X, Stanton L, Kennedy L, Pala D, Chen Y, Howat SL, Renzoni EA, Carter DE, Bou-Gharios G, Stratton RJ, Pearson JD, Beier F, Lyons KM, Black CM, Abraham DJ, Leask A (2006b) CCN2 is necessary for adhesive responses to TGFß1 in embryonic fibroblasts. J Biol Chem 281:10715–10726

    Article  PubMed  Google Scholar 

  • Shi-wen X, Renzoni EA, Kennedy L, Howat S, Chen Y, Pearson JD, Bou-Gharios G, Dashwood MR, du Bois RM, Black CM, Denton CP, Abraham DJ, Leask A (2007) Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biol 26:625–632

    Article  PubMed  Google Scholar 

  • Sime PJ (2008) The antifibrogenic potential of PPARgamma ligands in pulmonary fibrosis. J Investig Med 56:534–538

    PubMed  CAS  Google Scholar 

  • Wu M, Melichian DS, Chang E, Warner-Blankenship M, Ghosh AK, Varga J (2009) Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am J Pathol 174:519–533

    Article  PubMed  CAS  Google Scholar 

  • Yeger H, Perbal B (2007) The CCN family of genes: a perspective on CCN biology and therapeutic potential. J Cell Commun Signal 1:159–164

    Article  PubMed  Google Scholar 

  • Yoon PO, Lee MA, Cha H, Jeong MH, Kim J, Jang SP, Choi BY, Jeong D, Yang DK, Hajjar RJ, Park WJ (2010) The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. J Mol Cell Cardiol 49:294–303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

AL is supported by the Canadian Institute of Health Research, the Ontario Thoracic Society and the Canadian Foundation for Innovation, is a member of the Canadian Scleroderma Research Group New Emerging Team and is an Arthritis Society (Scleroderma Society of Ontario) New Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Leask.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leask, A. Possible strategies for anti-fibrotic drug intervention in scleroderma. J. Cell Commun. Signal. 5, 125–129 (2011). https://doi.org/10.1007/s12079-011-0122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-011-0122-6

Keywords

Navigation