Log in

A computational investigation of cis-gene regulation in evolution

  • Original Article
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

In biological processes involving gene networks, genes regulate other genes that determine the phenotypic traits. Gene regulation plays an important role in evolutionary dynamics. In a genetic algorithm, a trans-gene regulatory mechanism was shown to speed up adaptation and evolution. Here, we examine the effect of cis-gene regulation on an adaptive system. The model is haploid. A chromosome is partitioned into regulatory loci and structural loci. The regulatory genes regulate the expression and functioning of structural genes via the cis-elements in a probabilistic manner. In the simulation, the change in the allele frequency, the mean population fitness and the efficiency of phenotypic selection are monitored. Cis-gene regulation increases adaption and accelerates the evolutionary process in comparison with the case involving absence of gene regulation. Some special features of the simulation results are as follows. A low ratio of regulatory loci and structural loci gives higher adaptation for fixed total number of loci. Plasticity is advantageous beyond a threshold value. Adaptation is better for large number of total loci when the ratio of regulatory loci to structural loci is one. However, it reaches a saturation beyond which the increase in the total loci is not advantageous. Efficiency of the phenotypic selection is higher for larger value of the initial plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294(5541):321–326

    Article  CAS  PubMed  Google Scholar 

  • Alberts R (2004) Boolean modeling of genetic regulatory networks. In: Complex networks (pp. 459–481). Springer, Berlin, Heidelberg

  • Aluru S (ed) (2005). Chapman and Hall/CRC, London, UK

    Google Scholar 

  • Behera N (1997) Effect of phenotypic plasticity on adaptation and evolution: a genetic algorithm analysis. Curr Sci 73:968–976

    Google Scholar 

  • Behera N, Nanjundiah V (1995) An investigation into the role of phenotypic plasticity in evolution. J Theor Biol 172(3):225

    Article  CAS  PubMed  Google Scholar 

  • Behera N, Nanjundiah V (1996) The consequences of phenotypic plasticity in cyclically varying environments: a genetic algorithm study. J Theor Biol 178(2):135–144

    Article  CAS  PubMed  Google Scholar 

  • Behera N, Nanjundiah V (1997) Trans-gene regulation in adaptive evolution: a genetic algorithm model. J Theor Biol 188(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Behera N, Nanjundiah V (2004) Phenotypic plasticity can potentiate rapid evolutionary change. J Theor Biol 226(2):177–184

    Article  PubMed  Google Scholar 

  • Bochner BR (2003) New technologies to assess genotype–phenotype relationships. Nat Rev Genet 4(4):309–314

    Article  CAS  PubMed  Google Scholar 

  • Cherry TJ et al (2020) Map** the cis-regulatory architecture of the human retina reveals noncoding genetic variation in disease. In: Proceedings of the American academy of sciences, 117, P-9001

  • Cutter AD, Bundus JD (2020) Speciation and the developmental alarm clock. Elife 9:e56276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Ardenne K, Lohrenz T, Bartley KA, Montague PR (2013) Computational heterogeneity in the human mesencephalic dopamine system. Cogn Affect Behav Neurosci 13(4):747–756

    Article  PubMed  PubMed Central  Google Scholar 

  • Darwin C (2004) On the origin of species, 1859. Routledge publisher, Oxfordshire, UK

    Book  Google Scholar 

  • De Meaux J, Pop A, Mitchell-Olds T (2006) Cis-regulatory evolution of chalcone- synthase expression in the genus Arabidopsis. Genetics 174(4):2181–2202

    Article  PubMed  PubMed Central  Google Scholar 

  • Espinosa-Soto C et al (2011) Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits. BMC Evol Biol 11:1–14

    Article  Google Scholar 

  • Fierst JL (2011) A history of phenotypic plasticity accelerates adaptation to a new environment. J Evol Biol. https://doi.org/10.1111/j.1420-9101.2011.01333.x

    Article  PubMed  Google Scholar 

  • Flohlay S et al (2021) Cis-acting variation is common across regulatory layers but is often buffered during embryonic development. Genome Res. https://doi.org/10.1101/gr.266338.120

    Article  Google Scholar 

  • Fraser HB, Levy S, Chavan A, Shah HB, Perez JC, Zhou Y, Sinha H (2012) Polygenic cis-regulatory adaptation in the evolution of yeast pathogenicity. Genome Res 22(10):1930–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futuyma DJ (2010) Evolutionary constraint and ecological consequences. Evol Int J Org Evol 64(7):1865–1884

    Article  Google Scholar 

  • Futuyma DJ (2009). Natural selection and adaptation. Evolution, 279–301

  • Georg J, Hess WR (2011) Cis antisense RNA: another level of gene regulation in bacteria. Microbiol Mol Biol Rev 75(2):286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson G, Hogness DS (1996) Effect of polymorphism in the drosophila regulatory gene ultrabithorax on homeotic stability. Science 271(5246):200–203

    Article  CAS  PubMed  Google Scholar 

  • Gil N, Ulitsky I (2020) Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet 21:102–117

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves Â, Costa E (2008) A computational model of gene regulatory networks and its topological properties. In: ALIFE, pp 204–211

  • Hamilton MB (2009) Population genetics (No. 575.15 H35)

  • Hense W (2009) Evolutionary and functional analysis of gene expression regulation in Drosophila melanogaster (Doctoral dissertation, LMU)

  • Hill MS, Vande P, Zande P, Wittkopp J (2021) Molecular and evolutionary processes generating variation in gene expression. Nat Rev Genet 22:203–215

    Article  CAS  PubMed  Google Scholar 

  • Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, Cambridge

    Book  Google Scholar 

  • Hollander J et al (2015) New frontiers in phenotypic plasticity and evolution. Heredity 115:273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatri BS, Goldstein RA (2015) Simple biophysical model predicts faster accumulation of hybrid incompatibilities in small populations under stabilizing selection. Genetics 201(4):1525–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatri BS, Goldstein RA (2019) Biophysics and population size constrains speciation in an evolutionary model of developmental system drift. PLoS Comput Biol 15(7):e1007177

    Article  PubMed  PubMed Central  Google Scholar 

  • King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188(4184):107–116

    Article  CAS  PubMed  Google Scholar 

  • Knabe JF, Wegner K, Nehaniv CL, Schilstra MJ (2010) Genetic algorithms and their application to in silico evolution of genetic regulatory networks. Humana Press, Totowa, pp 297–321

    Google Scholar 

  • Lale**i A et al (2021) Adaptive phenotypic plasticity stabilizes evolution in fluctuating environments. Front Ecol Evol 9:715281

    Article  Google Scholar 

  • Mack KL, Nachman MW (2017) Gene regulation and speciation. Trends Genet 33:68–80

    Article  CAS  PubMed  Google Scholar 

  • Madan Babu M, Teichmann SA (2003) Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res 31(4):1234–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maranville JC, Luca F, Stephens M, Di Rienzo A (2012) Map** gene- environment interactions at regulatory polymorphisms: insights into mechanisms of phenotypic variation. Transcription 3(2):56–62

    Article  PubMed  Google Scholar 

  • An introduction to genetic algorithms. Cambridge, Massachusetts London, England, Fifth printing, 3: 62

  • Nachman I (2004) Probabilistic modeling of gene regulatory networks from data (Doctoral dissertation, Hebrew University of Jerusalem)

  • Nestler EJ, Hyman SE (2002) Regulation of gene expression. Neuropsychopharma- Cology: Fifth Generation Progress, 217–228

  • Osada N et al (2017) Cis- and trans-regulatory effects on gene expression in a natural population of Drosophila melanogaster. Genetics 206:2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pachuau JL (2021) An overview of crossover techniques in genetic algorithm. Modeling, simulation and optimization, (SIST, Vol 206) P 581

  • Pang T (2006) An introduction to computational physics-2nd Edition, 402. University of Nevada, Las Vegas

    Book  Google Scholar 

  • Pigliucci M (2008) The proper role of population genetics in modern evolutionary theory. Biol Theory 3(4):316–324

    Article  Google Scholar 

  • Reuveni E et al (2018) Differential contributions of Cis and Trans gene transcription regulation mechanism in amygdale and prefrontal cortex and modulation by social stress. Nat Sci Rep 8:1–10

    Google Scholar 

  • Rifkin SA, Kim J, White KP (2003) Evolution of gene expression in the Drosophila melanogaster subgroup. Nat Genet 33(2):138–144

    Article  CAS  PubMed  Google Scholar 

  • Savarese F, Grosschedl R (2006) Blurring cis and trans in gene regulation. Cell 126:248

    Article  CAS  PubMed  Google Scholar 

  • Schaefke B, Emerson JJ, Wang TY, Lu MYJ, Hsieh LC, Li WH (2013) Inheritance of gene expression level and selective constraints on trans-and cis-regulatory changes in yeast. Mol Biol Evol 30(9):2121–2133

    Article  CAS  PubMed  Google Scholar 

  • Schleif R (1993) Genetics and molecular biology. Johns Hopkins University Press

    Google Scholar 

  • Seshasayee ASN (2009). A computational study of bacterial gene regulation and adaptation on a genomic scale (Doctoral dissertation, University of Cambridge)

  • Shih CH, Fay J (2021) Cis-regulatory variants affect gene expression dynamics in yeast. Evol Biol Genet Genom. https://doi.org/10.7554/eLife.68469

    Article  Google Scholar 

  • Signor AS, Nuzhtin SV (2018) The evolution of gene expression in cis and trans. Trends Genet 34:532–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivanandam SN, Deepa SN (2008) Genetic algorithms. In Introduction to genetic algorithms (pp. 15–37). Springer, Berlin

  • Swanson WJ (2003) Adaptive evolution of genes and gene families. Curr Opin Genet Dev 13(6):617–622

    Article  CAS  PubMed  Google Scholar 

  • Tulchinsky AY, Johnson NA, Watt WB, Porter AH (2014) Hybrid incompatibility arises in a sequence-based bio-energetic model of transcription factor binding. Genetics 198(3):1155–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1956) Genetic assimilation of bithorax phenotype. Evolution 10:1–13

    Article  Google Scholar 

  • Waddington CH (1961) Genetic assimilation. Adv Genet 10:257–293

    Article  CAS  PubMed  Google Scholar 

  • Wang Q et al (2019) Evolution of cis and trans regulatory divergence in the chicken genome between two contrasting breeds analyzed using three tissue types at one-day-old. BMC Genom 20:933

    Article  CAS  Google Scholar 

  • White MA (2015) Understanding how cis-regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences. Genomics 106:165–170

    Article  CAS  PubMed  Google Scholar 

  • Wittkopp PJ (2004) Evolutionary change in cis and trans gene regulation. Nature 430:85

    Article  CAS  PubMed  Google Scholar 

  • Wittkopp PJ, Kalay G (2012) Cis regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13:59

    Article  CAS  Google Scholar 

  • Zhang X, Richards EJ, Borevitz JO (2007) Genetic and epigenetic dissection of cis regulatory variation. Curr Opin Plant Biol 10(2):142–148

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The research problem was conceived by NB and MB. The programming was done, data were obtained, and the paper was written by MM. All authors have read and revised the manuscript.

Corresponding author

Correspondence to Narayan Behera.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, M., Bekele, M. & Behera, N. A computational investigation of cis-gene regulation in evolution. Theory Biosci. 142, 151–165 (2023). https://doi.org/10.1007/s12064-023-00391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-023-00391-3

Keywords

Navigation